Featured Research

from universities, journals, and other organizations

Potent mechanism helps viruses shut down body's defense system against infection

Date:
August 14, 2013
Source:
Salk Institute for Biological Studies
Summary:
Researchers have discovered a powerful mechanism by which viruses such as influenza, West Nile and Dengue evade the body's immune response and infect humans with these potentially deadly diseases. The findings may provide scientists with an attractive target for novel antiviral therapies.

From left are: John Young, Erin Lew, Greg Lemke, Anna Zagorska, and John Naughton.
Credit: Image: Courtesy of the Salk Institute for Biological Studies

Researchers at the Salk Institute for Biological Studies have discovered a powerful mechanism by which viruses such as influenza, West Nile and Dengue evade the body's immune response and infect humans with these potentially deadly diseases. The findings may provide scientists with an attractive target for novel antiviral therapies.

Published in the August issue of the journal Cell Host and Microbe, the findings describe a novel mechanism that this group of so-called "enveloped viruses" uses to disarm the host's innate immune response. The mechanism the scientists uncovered is based on these viruses activating a class of molecules, known as TAM receptors, which are located on the outside of certain immune cells.

In the immune system, TAM receptors are used by cells, such as macrophages and dendritic cells, to clean up dead cells, and they are also central inhibitors of the body's innate immune response to bacteria, viruses and other pathogens.

The Salk scientists found that a substance called phosphatidylserine (PtdSer), which is found on the surface of enveloped viruses (viruses with an outer wrapping of a lipid membrane), binds to extracellular proteins and activates TAM receptors on immune cells. In dendritic cells, a type of immune cell that interacts with T and B cells to initiate the adaptive immune response, TAM receptor activation turns off a set of genes called interferons that play a key role in antiviral defense.

"Our findings suggest a unique way in which TAM receptors contribute to the establishment of viral infection by disabling the interferon response," says co-lead study author John A.T. Young, a professor in Salk's Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis. "As a consequence, the interferon-stimulated defense genes are not turned on, rendering the target cell more permissive for virus infection."

This is a previously unknown mechanism for enveloped viruses, which are very common, to inhibit the body's normal antiviral response. Since PtdSer exposure seems to be a general feature of enveloped viruses, the researchers say many different viruses may use the mechanism to counteract the cellular antiviral response in cells with TAM receptors.

Understanding this mechanism allows researchers to work on developing broad-spectrum antiviral drugs that prevent viruses from shutting down the interferon response in cells by blocking TAM receptor activation. In their study, the Salk scientists tested a small-molecule drug called BMS-777607, initially developed for anti-cancer therapy, that does just that.

"With this small molecule, viruses can't activate TAM receptors, so they can't shut down the interferon response," says co-lead author Greg Lemke, a professor in Salk's Molecular Neurobiology Laboratory and the Françoise Gilot-Salk Chair, in whose laboratory TAM receptors were discovered.

With other scientists around the country, the Salk researchers are testing a variety of small molecule drugs in series of different viruses, including West Nile, Dengue, influenza, Ebola, Marburg, and hepatitis B. These drugs work, in large part, by blocking the virus' ability to activate TAM receptors, thereby leaving the interferon-mediated antiviral response intact.

"This is a completely novel approach," says Young, who holds the Nomis Foundation Chair at Salk. "It is a way of exploiting a normal piece of the cellular machinery in the immune system to block virus infections." And, if it works, it may prove to be an effective treatment to clear enveloped viruses during the acute phase of infection and perhaps also in chronic virus infections.

Other researchers on the study were co-first authors Suchita Bhattacharyya and Anna Zagόrska, as well as Erin D. Lew and John Naughton, from the Salk Institute; Bimmi Shrestha and Michael S. Diamond of Washington University; and Carla V. Rothlin of Yale University.

The study was supported by the National Institutes of Health, the Nomis and Auen Foundations, the James B. Pendleton Charitable Trust, a Salk Institute innovation grant, the Human Frontiers Science Program, and the Leukemia and Lymphoma Society.


Story Source:

The above story is based on materials provided by Salk Institute for Biological Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. Suchita Bhattacharyya, Anna Zagórska, Erin D. Lew, Bimmi Shrestha, Carla V. Rothlin, John Naughton, Michael S. Diamond, Greg Lemke, John A.T. Young. Enveloped Viruses Disable Innate Immune Responses in Dendritic Cells by Direct Activation of TAM Receptors. Cell Host & Microbe, 2013; 14 (2): 136 DOI: 10.1016/j.chom.2013.07.005

Cite This Page:

Salk Institute for Biological Studies. "Potent mechanism helps viruses shut down body's defense system against infection." ScienceDaily. ScienceDaily, 14 August 2013. <www.sciencedaily.com/releases/2013/08/130814191352.htm>.
Salk Institute for Biological Studies. (2013, August 14). Potent mechanism helps viruses shut down body's defense system against infection. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/08/130814191352.htm
Salk Institute for Biological Studies. "Potent mechanism helps viruses shut down body's defense system against infection." ScienceDaily. www.sciencedaily.com/releases/2013/08/130814191352.htm (accessed September 20, 2014).

Share This



More Plants & Animals News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) — The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) — Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins