Featured Research

from universities, journals, and other organizations

New explanation for key step in anthrax infection proposed

Date:
August 20, 2013
Source:
National Institute of Standards and Technology (NIST)
Summary:
A new hypothesis concerning a crucial step in the anthrax infection process has been advanced.

Anthrax toxins are sequestered from the cell surface (top) in a bubble-like endosome. The toxins have been thought to escape the endosome by threading their way through a hole in the endosome (lower left), but a new hypothesis suggests they may rupture the endosome (lower right).
Credit: Robertson/NIST

A new hypothesis concerning a crucial step in the anthrax infection process has been advanced by scientists at the National Institute of Standards and Technology (NIST) and the U.S. Army Medical Research Institute for Infectious Diseases (USAMRIID) at Fort Detrick, Md.

Related Articles


The research teams have explored the behavior of the toxins that rapidly overwhelm the body as the often-fatal disease progresses. Their findings suggest a new possible mechanism by which anthrax bacteria deliver the protein molecules that poison victims. Anthrax is easily weaponized; the findings could help lead to a more effective cure.

Anthrax bacteria kill by releasing three toxins that work in concert to destroy cells. One toxin, called PA, attaches to the cell membrane, where its surface serves as a sort of landing pad for the other two toxins, called LF and EF. Once several molecules of LF and EF have latched onto PA, the cell membrane tries to destroy these unwanted hangers-on by wrapping them up in an "endosome," a small bubble of membrane that gets pinched off and moved into the cell's interior. There, the cell attempts to destroy its contents by a process that includes making the interior of the endosome more acidic. But before the cell can fully carry out its plan, the LF and EF escape from the endosome and wreak havoc in the cell's interior. The question is: how do these toxins escape?

"A recent hypothesis is that LF and EF completely unfold and then squeeze through the narrow hole that PA forms in the endosomal membrane," says NIST physical scientist John Kasianowicz. "However, the studies used to support this concept make use of short segments of the toxins, not their native full-length versions. The results don't show that the complete LF and EF are transported through the pore or whether they refold into functional enzymes once they reach the other side. So, we decided to look at other possible explanations."

The NIST/USAMRIID team explored the behavior of full-length toxins using an artificial membrane that mimics a cell's exterior. They put the toxins mixed in salt water on one side of this barrier and slowly rendered this fluid more acidic, resembling conditions within an endosome. But the change in chemistry apparently altered the physical characteristics of the LF and EF toxins, because it caused them to bind irreversibly to the PA pore, creating a "complex" of multiple toxins. This result alone suggested it would be difficult, if not impossible, for LF and EF to thread through the pore.

In addition, the team discovered that the bound toxins tend to rupture membranes. This finding led them to suggest that perhaps it is complexes of LF or EF bound to PA that gets into cells, and that these complexes are the active toxins inside cells.

Kasianowicz says this new hypothesis could explain previous experimental results, in which the complex was found in the blood of animals that died of anthrax. But he emphasizes that the matter is not yet settled.

"We don't know enough to choose between these theories -- and in fact it's possible that the toxins escape the endosome by more than one mechanism," he says. "But it's important that we better understand this step in the process to thwart anthrax more effectively."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian J. Nablo, Rekha G. Panchal, Sina Bavari, Tam L. Nguyen, Rick Gussio, Wil Ribot, Art Friedlander, Donald Chabot, Joseph E. Reiner, Joseph W. F. Robertson, Arvind Balijepalli, Kelly M. Halverson, John J. Kasianowicz. Anthrax toxin-induced rupture of artificial lipid bilayer membranes. The Journal of Chemical Physics, 2013; 139 (6): 065101 DOI: 10.1063/1.4816467

Cite This Page:

National Institute of Standards and Technology (NIST). "New explanation for key step in anthrax infection proposed." ScienceDaily. ScienceDaily, 20 August 2013. <www.sciencedaily.com/releases/2013/08/130820161259.htm>.
National Institute of Standards and Technology (NIST). (2013, August 20). New explanation for key step in anthrax infection proposed. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2013/08/130820161259.htm
National Institute of Standards and Technology (NIST). "New explanation for key step in anthrax infection proposed." ScienceDaily. www.sciencedaily.com/releases/2013/08/130820161259.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins