Featured Research

from universities, journals, and other organizations

New approach to remedying childhood visual disorders

Date:
August 26, 2013
Source:
University of California - Irvine
Summary:
By discovering the role of key neurons that mediate an important part of vision development, neurobiologists have revealed a new approach to correcting visual disorders in children who suffer from early cataracts or amblyopia, also known as lazy eye.

By discovering the role of key neurons that mediate an important part of vision development, UC Irvine and UCLA neurobiologists have revealed a new approach to correcting visual disorders in children who suffer from early cataracts or amblyopia, also known as lazy eye.

Such youngsters can have permanent defects in vision, even after surgery to remove cataracts or correct lazy eye. These flaws are often a result of improper brain development due to visual deprivation during childhood. In contrast, when cataracts in adults are surgically corrected, normal vision is usually restored.

Xiangmin Xu, assistant professor of anatomy & neurobiology at UC Irvine, and Josh Trachtenberg, associate professor of neurobiology at UCLA, found that this phenomenon is caused by a specific class of inhibitory neurons that control the time window, or "critical period," in early vision development, generally before age 7. The results of their study appeared online Aug. 25 in Nature.

The researchers discovered that improper functioning of these key neurons during the critical period of development is responsible for these vision defects. Additionally, in tests on mice, they used an experimental drug compound to reopen this critical-period window and treat the neuronal defects associated with temporary loss of vision in one eye during early development.

Their work suggests that drugs targeted to the critical period-regulating neurons can correct central vision disorders in children who've suffered from amblyopia or early cataracts.

"The specific type of neurons that mediate the critical-period window during childhood development have not been well understood until now," Xu said. "Our breakthrough outlines a new path for treatments that can restore normal vision in children who have had early vision disorders."


Story Source:

The above story is based on materials provided by University of California - Irvine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sandra J. Kuhlman, Nicholas D. Olivas, Elaine Tring, Taruna Ikrar, Xiangmin Xu, Joshua T. Trachtenberg. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature, 2013; DOI: 10.1038/nature12485

Cite This Page:

University of California - Irvine. "New approach to remedying childhood visual disorders." ScienceDaily. ScienceDaily, 26 August 2013. <www.sciencedaily.com/releases/2013/08/130826123145.htm>.
University of California - Irvine. (2013, August 26). New approach to remedying childhood visual disorders. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/08/130826123145.htm
University of California - Irvine. "New approach to remedying childhood visual disorders." ScienceDaily. www.sciencedaily.com/releases/2013/08/130826123145.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins