Featured Research

from universities, journals, and other organizations

Wake up and smell the reef: Fish larvae sniff their way back home

Date:
August 28, 2013
Source:
University of Miami Rosenstiel School of Marine & Atmospheric Science
Summary:
A new study conducted at One Tree Island in the Great Barrier Reef has established that reef fish larvae can smell the presence of coral reefs from as far as several kilometers offshore, and use this odor to find home.

A new study led by Dr. Claire Paris, professor at the University of Miami Rosenstiel School of Marine & Atmospheric Science conducted at One Tree Island in the Great Barrier Reef used an o-DISC (ocean Drifting In Situ Chamber,) a unique device created in Paris' laboratory that is composed of circular behavioral arena transparent to light, sound and small scale turbulence, to track a single fish larva. The o-DISC was set adrift in the water column and the swimming activity and bearing of the larva was recorded using an underwater motion sensing and imaging system. The team established that reef fish larvae can smell the presence of coral reefs from as far as several kilometers offshore, and use this odor to find home.
Credit: Michael Kinsgford

How tiny fish larvae travel away from the reef, then know how to navigate their way back home is a scientific mystery.

A new study led by Dr. Claire Paris, Professor at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science conducted at One Tree Island in the Great Barrier Reef is helping to shed some light on the topic. Working with colleagues from UM, Boston University, Laboratoire Oceanographique de Villefranche, James Cook University and Oldenburg University, the team has established that reef fish larvae can smell the presence of coral reefs from as far as several kilometers offshore, and use this odor to find home.

Members of the research team had established earlier that reef fish larvae could discriminate between the odors of different nearby reefs while preferring the odor of the reef where they were settling (Gerlach et al. Proceedings from the National Academy of Science, 2007). However, these experiments were done under controlled conditions in a shore-based laboratory.

"In this collaborative study we expanded our work to demonstrate that the odor responses can also be detected under the field conditions," said Dr. Jelle Atema, Boston University Professor of Biology. "This establishes for the first time that reef fish larvae discriminate odor in situ."

The current study, which appears in the August 28 edition of PLOS ONE, was designed to test the response of larvae in a natural open ocean setting using an outflow plume from One Tree Island. Using light traps, the team collected settlement-stage larvae from cardinalfish [Apogonidae] and damselfish [Pomacentridae].

In deployments to the north and south of One Tree Island, single larvae were observed in the central chamber of an o-DISC (ocean Drifting In Situ Chamber,) a unique device created in Paris' laboratory that is composed of circular behavioral arena transparent to light, sound and small scale turbulence. The light-weight piece of equipment was set adrift in the water column and the swimming activity and bearing of the larva was recorded using an underwater motion sensing and imaging system. The o-DISC tracked larval movement and orientation using odor cues from the environment.

Species from the two reef-fish families reacted very differently to the olfactory stimulus. Cardinalfish tended to speed up their movement in response to odors in the plume, but their orientation toward the reef was not apparent. They zigzag within the o-DISC chamber, which led the researchers to believe they were using infotaxis, or sporadic odor cues, in their attempt to orient. In contrast, damselfish slowed their swim speeds, and there was orientation along the shoreline and toward the west. They seemed to be moving with a compass, triggered by the odor stimulus.

"Ocean currents do not appear to influence the orientation of fish larvae," said Paris. "They do not provide a frame of reference since larvae are transported within. Instead, we find that fish larvae navigate by detecting turbulent odor signals transported kilometers away from the reef. Subsequently they switch to a directional cue, perhaps magnetic or acoustic, which allows them to find the reef."

Other fish, including mature sharks and freshwater juvenile salmon navigate using olfactory signals, but this is the first study to report that fish larvae use similar odor cues.

"The implications of this study are tremendous, because we have to take into account the impact that human activities might have on the smells contained within the ocean. If these larvae cannot get their 'wake up' cues to orient back toward the reef they may stay out at sea and become easy prey before finding home," said Paris.


Story Source:

The above story is based on materials provided by University of Miami Rosenstiel School of Marine & Atmospheric Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Claire B. Paris, Jelle Atema, Jean-Olivier Irisson, Michael Kingsford, Gabriele Gerlach, Cedric M. Guigand. Reef Odor: A Wake Up Call for Navigation in Reef Fish Larvae. PLoS ONE, 2013; 8 (8): e72808 DOI: 10.1371/journal.pone.0072808

Cite This Page:

University of Miami Rosenstiel School of Marine & Atmospheric Science. "Wake up and smell the reef: Fish larvae sniff their way back home." ScienceDaily. ScienceDaily, 28 August 2013. <www.sciencedaily.com/releases/2013/08/130828211140.htm>.
University of Miami Rosenstiel School of Marine & Atmospheric Science. (2013, August 28). Wake up and smell the reef: Fish larvae sniff their way back home. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/08/130828211140.htm
University of Miami Rosenstiel School of Marine & Atmospheric Science. "Wake up and smell the reef: Fish larvae sniff their way back home." ScienceDaily. www.sciencedaily.com/releases/2013/08/130828211140.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins