Featured Research

from universities, journals, and other organizations

Wake up and smell the reef: Fish larvae sniff their way back home

Date:
August 28, 2013
Source:
University of Miami Rosenstiel School of Marine & Atmospheric Science
Summary:
A new study conducted at One Tree Island in the Great Barrier Reef has established that reef fish larvae can smell the presence of coral reefs from as far as several kilometers offshore, and use this odor to find home.

A new study led by Dr. Claire Paris, professor at the University of Miami Rosenstiel School of Marine & Atmospheric Science conducted at One Tree Island in the Great Barrier Reef used an o-DISC (ocean Drifting In Situ Chamber,) a unique device created in Paris' laboratory that is composed of circular behavioral arena transparent to light, sound and small scale turbulence, to track a single fish larva. The o-DISC was set adrift in the water column and the swimming activity and bearing of the larva was recorded using an underwater motion sensing and imaging system. The team established that reef fish larvae can smell the presence of coral reefs from as far as several kilometers offshore, and use this odor to find home.
Credit: Michael Kinsgford

How tiny fish larvae travel away from the reef, then know how to navigate their way back home is a scientific mystery.

A new study led by Dr. Claire Paris, Professor at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science conducted at One Tree Island in the Great Barrier Reef is helping to shed some light on the topic. Working with colleagues from UM, Boston University, Laboratoire Oceanographique de Villefranche, James Cook University and Oldenburg University, the team has established that reef fish larvae can smell the presence of coral reefs from as far as several kilometers offshore, and use this odor to find home.

Members of the research team had established earlier that reef fish larvae could discriminate between the odors of different nearby reefs while preferring the odor of the reef where they were settling (Gerlach et al. Proceedings from the National Academy of Science, 2007). However, these experiments were done under controlled conditions in a shore-based laboratory.

"In this collaborative study we expanded our work to demonstrate that the odor responses can also be detected under the field conditions," said Dr. Jelle Atema, Boston University Professor of Biology. "This establishes for the first time that reef fish larvae discriminate odor in situ."

The current study, which appears in the August 28 edition of PLOS ONE, was designed to test the response of larvae in a natural open ocean setting using an outflow plume from One Tree Island. Using light traps, the team collected settlement-stage larvae from cardinalfish [Apogonidae] and damselfish [Pomacentridae].

In deployments to the north and south of One Tree Island, single larvae were observed in the central chamber of an o-DISC (ocean Drifting In Situ Chamber,) a unique device created in Paris' laboratory that is composed of circular behavioral arena transparent to light, sound and small scale turbulence. The light-weight piece of equipment was set adrift in the water column and the swimming activity and bearing of the larva was recorded using an underwater motion sensing and imaging system. The o-DISC tracked larval movement and orientation using odor cues from the environment.

Species from the two reef-fish families reacted very differently to the olfactory stimulus. Cardinalfish tended to speed up their movement in response to odors in the plume, but their orientation toward the reef was not apparent. They zigzag within the o-DISC chamber, which led the researchers to believe they were using infotaxis, or sporadic odor cues, in their attempt to orient. In contrast, damselfish slowed their swim speeds, and there was orientation along the shoreline and toward the west. They seemed to be moving with a compass, triggered by the odor stimulus.

"Ocean currents do not appear to influence the orientation of fish larvae," said Paris. "They do not provide a frame of reference since larvae are transported within. Instead, we find that fish larvae navigate by detecting turbulent odor signals transported kilometers away from the reef. Subsequently they switch to a directional cue, perhaps magnetic or acoustic, which allows them to find the reef."

Other fish, including mature sharks and freshwater juvenile salmon navigate using olfactory signals, but this is the first study to report that fish larvae use similar odor cues.

"The implications of this study are tremendous, because we have to take into account the impact that human activities might have on the smells contained within the ocean. If these larvae cannot get their 'wake up' cues to orient back toward the reef they may stay out at sea and become easy prey before finding home," said Paris.


Story Source:

The above story is based on materials provided by University of Miami Rosenstiel School of Marine & Atmospheric Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Claire B. Paris, Jelle Atema, Jean-Olivier Irisson, Michael Kingsford, Gabriele Gerlach, Cedric M. Guigand. Reef Odor: A Wake Up Call for Navigation in Reef Fish Larvae. PLoS ONE, 2013; 8 (8): e72808 DOI: 10.1371/journal.pone.0072808

Cite This Page:

University of Miami Rosenstiel School of Marine & Atmospheric Science. "Wake up and smell the reef: Fish larvae sniff their way back home." ScienceDaily. ScienceDaily, 28 August 2013. <www.sciencedaily.com/releases/2013/08/130828211140.htm>.
University of Miami Rosenstiel School of Marine & Atmospheric Science. (2013, August 28). Wake up and smell the reef: Fish larvae sniff their way back home. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/08/130828211140.htm
University of Miami Rosenstiel School of Marine & Atmospheric Science. "Wake up and smell the reef: Fish larvae sniff their way back home." ScienceDaily. www.sciencedaily.com/releases/2013/08/130828211140.htm (accessed August 23, 2014).

Share This




More Plants & Animals News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins