Featured Research

from universities, journals, and other organizations

Arylamine functionalization of carbon anodes for improved microbial electrocatalysis

Date:
August 30, 2013
Source:
National University of Ireland, Galway
Summary:
Introduction of arylamine functional groups to graphite electrodes results in improved initial catalysis for acetate oxidation by microbial biofilms over that observed on unmodified anodes. Arylamine modified anodes achieve a current density of 3.4 A m−2 whilst unmodified anodes achieve only 1.3 A m−2 during the first batch feed cycle. The surface functionalization strategy provides a route to enhancing microbial bioelectrochemical systems process performance and for studying the complex mechanisms involved in such systems.

Introduction of arylamine functional groups to graphite electrodes results in improved initial catalysis for acetate oxidation by microbial biofilms over that observed on unmodified anodes.
Credit: Amit Kumar

Introduction of arylamine functional groups to graphite electrodes results in improved initial catalysis for acetate oxidation by microbial biofilms over that observed on unmodified anodes. Arylamine modified anodes achieve a current density of 3.4 A m−2 whilst unmodified anodes achieve only 1.3 A m−2 during the first batch feed cycle. The surface functionalization strategy provides a route to enhancing microbial bioelectrochemical systems process performance and for studying the complex mechanisms involved in such systems.

In microbial bioelectrochemical systems (BES) a range of materials and microbes are selected on the basis of their ability to exchange electrons. However, the relatively low current densities, and long start-up times, for such systems to date points to a requirement for a more efficient connection of microorganisms, as biocatalyst, to electrode surfaces, in order to progress to exploitation of microbial BES technology. Deliberate, controlled modification of electrode surfaces provides a route to probe, and further understand electron exchange mechanisms between bacteria and electrode and may lead to enhanced performance of BES for practical applications.

Introduction of arylamine functional groups to graphite electrodes resulted in improved initial catalysis for acetate oxidation by microbial biofilms over that observed on unmodified anodes. Arylamine modified anodes achieve a current density of 3.4 A m-2 whilst unmodified anodes achieve only 1.3 A m-2 during the first batch feed cycle. The surface functionalisation strategy provides a route to enhancing microbial bioelectrochemical systems process performance and for studying the complex mechanisms involved in such systems.

Overall, these preliminary results show that surface engineering (chemical functional groups) of anodes can enhance initial current density in a batch fed single chamber electrochemical cell, resulting in a slight decrease in start-up time when feeding was switched to continuous. Surface engineering is a good strategy to modulate reactor start-up (colonization time), biofilm speciation, and current output of microbial electrochemical cells and provides an additional, key, tool to improve the understanding of bacterial attachment, colonization and growth at electrode surfaces.

The work was done at BERL-Lab Bimolecular Electronics Research Laboratory (National University of Ireland, Galway).


Story Source:

The above story is based on materials provided by National University of Ireland, Galway. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amit Kumar, Peter Σ Conghaile, Krishna Katuri, Piet Lens, Dσnal Leech. Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. RSC Advances, 2013; DOI: 10.1039/c3ra42953a

Cite This Page:

National University of Ireland, Galway. "Arylamine functionalization of carbon anodes for improved microbial electrocatalysis." ScienceDaily. ScienceDaily, 30 August 2013. <www.sciencedaily.com/releases/2013/08/130830131103.htm>.
National University of Ireland, Galway. (2013, August 30). Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2013/08/130830131103.htm
National University of Ireland, Galway. "Arylamine functionalization of carbon anodes for improved microbial electrocatalysis." ScienceDaily. www.sciencedaily.com/releases/2013/08/130830131103.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins