Featured Research

from universities, journals, and other organizations

Wiring microbes to conduct and produce electricity faster

Date:
September 4, 2013
Source:
National University of Ireland, Galway
Summary:
Scientists have found evidence that altering the chemistry of an electrode surface (surface engineering) can help microbial communities to connect to the electrode to produce more electricity (electron-exchange) more rapidly compared to unmodified electrodes. Electron exchange is at the heart of all redox reactions occurring in the natural world, as well as in bioengineered systems: so called 'biolectrochemical systems'. Practical applications of these systems include current generation, wastewater treatment, and biochemical and biofuel production.

This shows wiring microbes to conduct and produce electricity faster.
Credit: Amit Kumara

A team of researchers in Ireland have found evidence that altering the chemistry of an electrode surface (surface engineering) can help microbial communities to connect to the electrode to produce more electricity (electron-exchange) more rapidly compared to unmodified electrodes. Electron exchange is at the heart of all redox reactions occurring in the natural world, as well as in bioengineered systems: so called 'biolectrochemical systems'.

Practical applications of these systems include current generation, wastewater treatment, and biochemical and biofuel production. The microbial-electrode interface is a sum of complex physical-chemical and biological interactions permitting microbes to exchange electrons with solid electrodes to produce bioelectrochemical systems. In these systems the microbes, compete, and self-select electrode materials for electron exchange capabilities.

However, to date this selection is not well understood yet electricity or chemicals can be produced using various substrates, including wastewater or waste gases, depending upon operational settings, says Amit Kumar, who worked under the leadership of Dσnal Leech at the National University of Ireland Galway in Ireland. The Biomolecular Electronics Research Laboratory has been working on probing conditions for selection of electrodes by microbes for several years, and we have recently adopted an approach to tailor the chemistry of electrode surfaces which will help us better understand the selection mechanism says Amit Kumar and Dσnal Leech.

Our first result shows that surfaces modified with nitrogen-containing amines result in higher and more rapid production of current, compared to those without this modification, when placed in microbial cultures.

Next on our researcher agenda is to elucidate the selection mechanism using a range of surface modifications and microbial cultures.


Story Source:

The above story is based on materials provided by National University of Ireland, Galway. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amit Kumar, Peter Σ Conghaile, Krishna Katuri, Piet Lens, Dσnal Leech. Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. RSC Advances, 2013; DOI: 10.1039/c3ra42953a

Cite This Page:

National University of Ireland, Galway. "Wiring microbes to conduct and produce electricity faster." ScienceDaily. ScienceDaily, 4 September 2013. <www.sciencedaily.com/releases/2013/09/130904105351.htm>.
National University of Ireland, Galway. (2013, September 4). Wiring microbes to conduct and produce electricity faster. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2013/09/130904105351.htm
National University of Ireland, Galway. "Wiring microbes to conduct and produce electricity faster." ScienceDaily. www.sciencedaily.com/releases/2013/09/130904105351.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins