Featured Research

from universities, journals, and other organizations

Clues in coral bleaching mystery

Date:
September 5, 2013
Source:
Carnegie Institution
Summary:
Coral reefs are tremendously important for ocean biodiversity. Unfortunately they have been in great decline in recent years, much of it due to the effects of global climate change. One such effect, called bleaching, occurs when the symbiotic algae that are essential for providing nutrients to the coral either lose their identifying photosynthetic pigmentation and their ability to perform photosynthesis or disappear entirely from the coral's tissue. Without a healthy population of these algae, the coral cannot survive.

Coral reefs are tremendously important for ocean biodiversity, as well as for the economic and aesthetic value they provide to their surrounding communities.
Credit: © Irochka / Fotolia

Coral reefs are tremendously important for ocean biodiversity, as well as for the economic and aesthetic value they provide to their surrounding communities. Unfortunately they have been in great decline in recent years, much of it due to the effects of global climate change. One such effect, called bleaching, occurs when the symbiotic algae that are essential for providing nutrients to the coral either lose their identifying photosynthetic pigmentation and their ability to perform photosynthesis or disappear entirely from the coral's tissue. Without a healthy population of these algae, the coral cannot survive.

Related Articles


There has been much attention given to the environmental conditions that trigger a reef's demise due to bleaching, but little is certain about the precise cellular and molecular mechanisms of the bleaching process. New research from Carnegie's Arthur Grossman brings into question the prevailing theory for how bleaching occurs on a molecular level. It is published in Current Biology.

Photosynthesis, the process by which plants, algae, and select bacteria convert the sun's light energy into chemical energy, takes place in a cellular organelle called the chloroplast. It has been theorized that the major cause of bleaching is the result of chloroplast damage due to heat stress, which results in the production of toxic, highly reactive oxygen molecules during photosynthesis.

Grossman and his team -- led by Carnegie's Dimitri Tolleter and in collaboration with John Pringle and Steve Palumbi of Stanford University -- demonstrated that bleaching still occurs if the algae are heat stressed in the dark, when the photosynthetic machinery is shut off. This is surprising since it means that toxic oxygen molecules formed in heat-damaged chloroplasts during photosynthetic reactions during the light are likely not the major culprits that cause bleaching.

Therefore other, as yet unexplored, mechanisms for bleaching must exist. This work suggests the existence of potentially novel mechanisms associated with coral bleaching. A mechanistic understanding of bleaching is critical for developing strategies to mitigate or eliminate the problem of coral decline.

The process of coral bleaching in the dark at elevated temperatures -- and perhaps also in response to other stress conditions -- could be a potential advantage to corals.

Grossman explains: "One theory that we are exploring is that under heat-stress conditions the corals eject the algal symbionts at night in order to avoid the production and accumulation of photosynthetically-derived toxic oxygen molecules during the day. If such molecules were to accumulate, they would threaten the viability of both the alga and its host."

The team's study also suggest that certain strategies proposed to protect reefs, such as shading the corals from high light, may not prevent high temperature-triggered bleaching (because bleaching would still occur in the dark). Clearly there is a need for more thorough molecular analyses to establish the various molecular causes of the bleaching processes.

Additionally, Grossman and Tolleter's work revealed some key details, such as the breakdown of specific parts of the photosynthetic apparatus when the corals are stressed. This process can be monitored and may potentially serve to evaluate the health of the reef and the risk of bleaching and death.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dimitri Tolleter, François O. Seneca, Jan C. DeNofrio, Cory J. Krediet, Stephen R. Palumbi, John R. Pringle, Arthur R. Grossman. Coral Bleaching Independent of Photosynthetic Activity. Current Biology, 2013; DOI: 10.1016/j.cub.2013.07.041

Cite This Page:

Carnegie Institution. "Clues in coral bleaching mystery." ScienceDaily. ScienceDaily, 5 September 2013. <www.sciencedaily.com/releases/2013/09/130905134014.htm>.
Carnegie Institution. (2013, September 5). Clues in coral bleaching mystery. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2013/09/130905134014.htm
Carnegie Institution. "Clues in coral bleaching mystery." ScienceDaily. www.sciencedaily.com/releases/2013/09/130905134014.htm (accessed October 30, 2014).

Share This



More Earth & Climate News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) — A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) — The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) — A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) — Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins