Featured Research

from universities, journals, and other organizations

Clues in coral bleaching mystery

Date:
September 5, 2013
Source:
Carnegie Institution
Summary:
Coral reefs are tremendously important for ocean biodiversity. Unfortunately they have been in great decline in recent years, much of it due to the effects of global climate change. One such effect, called bleaching, occurs when the symbiotic algae that are essential for providing nutrients to the coral either lose their identifying photosynthetic pigmentation and their ability to perform photosynthesis or disappear entirely from the coral's tissue. Without a healthy population of these algae, the coral cannot survive.

Coral reefs are tremendously important for ocean biodiversity, as well as for the economic and aesthetic value they provide to their surrounding communities.
Credit: © Irochka / Fotolia

Coral reefs are tremendously important for ocean biodiversity, as well as for the economic and aesthetic value they provide to their surrounding communities. Unfortunately they have been in great decline in recent years, much of it due to the effects of global climate change. One such effect, called bleaching, occurs when the symbiotic algae that are essential for providing nutrients to the coral either lose their identifying photosynthetic pigmentation and their ability to perform photosynthesis or disappear entirely from the coral's tissue. Without a healthy population of these algae, the coral cannot survive.

There has been much attention given to the environmental conditions that trigger a reef's demise due to bleaching, but little is certain about the precise cellular and molecular mechanisms of the bleaching process. New research from Carnegie's Arthur Grossman brings into question the prevailing theory for how bleaching occurs on a molecular level. It is published in Current Biology.

Photosynthesis, the process by which plants, algae, and select bacteria convert the sun's light energy into chemical energy, takes place in a cellular organelle called the chloroplast. It has been theorized that the major cause of bleaching is the result of chloroplast damage due to heat stress, which results in the production of toxic, highly reactive oxygen molecules during photosynthesis.

Grossman and his team -- led by Carnegie's Dimitri Tolleter and in collaboration with John Pringle and Steve Palumbi of Stanford University -- demonstrated that bleaching still occurs if the algae are heat stressed in the dark, when the photosynthetic machinery is shut off. This is surprising since it means that toxic oxygen molecules formed in heat-damaged chloroplasts during photosynthetic reactions during the light are likely not the major culprits that cause bleaching.

Therefore other, as yet unexplored, mechanisms for bleaching must exist. This work suggests the existence of potentially novel mechanisms associated with coral bleaching. A mechanistic understanding of bleaching is critical for developing strategies to mitigate or eliminate the problem of coral decline.

The process of coral bleaching in the dark at elevated temperatures -- and perhaps also in response to other stress conditions -- could be a potential advantage to corals.

Grossman explains: "One theory that we are exploring is that under heat-stress conditions the corals eject the algal symbionts at night in order to avoid the production and accumulation of photosynthetically-derived toxic oxygen molecules during the day. If such molecules were to accumulate, they would threaten the viability of both the alga and its host."

The team's study also suggest that certain strategies proposed to protect reefs, such as shading the corals from high light, may not prevent high temperature-triggered bleaching (because bleaching would still occur in the dark). Clearly there is a need for more thorough molecular analyses to establish the various molecular causes of the bleaching processes.

Additionally, Grossman and Tolleter's work revealed some key details, such as the breakdown of specific parts of the photosynthetic apparatus when the corals are stressed. This process can be monitored and may potentially serve to evaluate the health of the reef and the risk of bleaching and death.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dimitri Tolleter, François O. Seneca, Jan C. DeNofrio, Cory J. Krediet, Stephen R. Palumbi, John R. Pringle, Arthur R. Grossman. Coral Bleaching Independent of Photosynthetic Activity. Current Biology, 2013; DOI: 10.1016/j.cub.2013.07.041

Cite This Page:

Carnegie Institution. "Clues in coral bleaching mystery." ScienceDaily. ScienceDaily, 5 September 2013. <www.sciencedaily.com/releases/2013/09/130905134014.htm>.
Carnegie Institution. (2013, September 5). Clues in coral bleaching mystery. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2013/09/130905134014.htm
Carnegie Institution. "Clues in coral bleaching mystery." ScienceDaily. www.sciencedaily.com/releases/2013/09/130905134014.htm (accessed September 19, 2014).

Share This



More Earth & Climate News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) — An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) — Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins