Featured Research

from universities, journals, and other organizations

Chemists develop switchable antibiotic

Date:
September 16, 2013
Source:
University of Groningen
Summary:
Scientists have developed an antibiotic whose activity can be controlled using light. It is possible to ‘switch on’ the substance immediately before use, after which it will slowly lose its activity. Thus release of the active antibiotic into the environment might be prevented.

E. coli grown on an agar plate containing UV-activated antibiotic shows the pattern from a template held between it and the lamp.
Credit: Nature Chemistry

Scientists at the University of Groningen have developed an antibiotic whose activity can be controlled using light. It is possible to 'switch on' the substance immediately before use, after which it will slowly lose its activity. Thus release of the active antibiotic into the environment might be prevented. This discovery was published on the website of the scientific journal Nature Chemistry on 15 September 2013.

Related Articles


Antibiotics protect us against lethal infections and are also widely used in agriculture. However, after use they end up in the environment, for example through the sewage system, where they can promote the development of resistant bacterial strains.

With this in mind, the Groningen scientists investigated whether an antibiotic could be developed whose activity could be controlled. After all, if only deactivated antibiotics enter the environment, there will be no risk of resistance.

Variants

Ben Feringa, professor of organic chemistry, is a pioneer in the field of light-activated molecular switches. His PhD student Willem Velema created variants of an antibiotic to which a photoswitchable group was attached. 'It is difficult to predict what will happen to the activity when a group in a molecule is changed', explains Velema. The new group will, after all, influence the effect of the antibiotic. 'And that will have to happen in exactly the right way.'

Velema made nine variants, one of which appeared to work very well in tests that were carried out in collaboration with the research group of molecular biologist Arnold Driessen. The switch ensures that the antibiotic does not work in the normal position. However, after radiation with ultraviolet light, part of the switch molecule flips, activating the antibiotic. In chemical terms: the switchable group changes from a trans-isomer to a cis-isomer.

Half-life

In the Nature Chemistry article, the researchers demonstrate that it is possible to switch on the antibiotic at any time. Subsequently, the molecule flips back by itself from the active cis-isomer to the non-active trans-isomer. The half-life is approximately two hours at body temperature.

Feringa emphasizes that the experiments are only meant to demonstrate that it is possible to control the activity of an antibiotic using light. 'The path from this idea to a working drug is very long, it could be another ten years.' In addition to switchable antibiotics not burdening the environment, they could also be used to treat very specific areas in the body. Feringa: 'You could take an inactive antibiotic for a skin infection and then activate it at the site where it is required. No useful bacteria in the intestines will be killed this way.'

Bacterial growth

For the time being, the switchable antibiotic is especially useful for research. 'It is possible to inhibit the growth of bacteria very specifically at a particular site and at a specific time.' You could, for example, investigate which factors influence the growth of the bacterium and the action of the antibiotic or the origin of resistance.

'But this article's most important message is that it is possible to externally control the action of a drug, composed of a relatively small molecule, in this case using light,' says Feringa. 'That is a whole new way of thinking about drug research.'


Story Source:

The above story is based on materials provided by University of Groningen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Willem A. Velema, Jan Pieter Van Der Berg, Mickel J. Hansen, Wiktor Szymanski, Arnold J. M. Driessen, and Ben L. Feringa. Optical control of antibacterial activity. Nature Chemistry, September 2013 DOI: 10.1038/nchem.1750)

Cite This Page:

University of Groningen. "Chemists develop switchable antibiotic." ScienceDaily. ScienceDaily, 16 September 2013. <www.sciencedaily.com/releases/2013/09/130916091019.htm>.
University of Groningen. (2013, September 16). Chemists develop switchable antibiotic. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/09/130916091019.htm
University of Groningen. "Chemists develop switchable antibiotic." ScienceDaily. www.sciencedaily.com/releases/2013/09/130916091019.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins