Featured Research

from universities, journals, and other organizations

Chemists develop switchable antibiotic

Date:
September 16, 2013
Source:
University of Groningen
Summary:
Scientists have developed an antibiotic whose activity can be controlled using light. It is possible to ‘switch on’ the substance immediately before use, after which it will slowly lose its activity. Thus release of the active antibiotic into the environment might be prevented.

E. coli grown on an agar plate containing UV-activated antibiotic shows the pattern from a template held between it and the lamp.
Credit: Nature Chemistry

Scientists at the University of Groningen have developed an antibiotic whose activity can be controlled using light. It is possible to 'switch on' the substance immediately before use, after which it will slowly lose its activity. Thus release of the active antibiotic into the environment might be prevented. This discovery was published on the website of the scientific journal Nature Chemistry on 15 September 2013.

Antibiotics protect us against lethal infections and are also widely used in agriculture. However, after use they end up in the environment, for example through the sewage system, where they can promote the development of resistant bacterial strains.

With this in mind, the Groningen scientists investigated whether an antibiotic could be developed whose activity could be controlled. After all, if only deactivated antibiotics enter the environment, there will be no risk of resistance.

Variants

Ben Feringa, professor of organic chemistry, is a pioneer in the field of light-activated molecular switches. His PhD student Willem Velema created variants of an antibiotic to which a photoswitchable group was attached. 'It is difficult to predict what will happen to the activity when a group in a molecule is changed', explains Velema. The new group will, after all, influence the effect of the antibiotic. 'And that will have to happen in exactly the right way.'

Velema made nine variants, one of which appeared to work very well in tests that were carried out in collaboration with the research group of molecular biologist Arnold Driessen. The switch ensures that the antibiotic does not work in the normal position. However, after radiation with ultraviolet light, part of the switch molecule flips, activating the antibiotic. In chemical terms: the switchable group changes from a trans-isomer to a cis-isomer.

Half-life

In the Nature Chemistry article, the researchers demonstrate that it is possible to switch on the antibiotic at any time. Subsequently, the molecule flips back by itself from the active cis-isomer to the non-active trans-isomer. The half-life is approximately two hours at body temperature.

Feringa emphasizes that the experiments are only meant to demonstrate that it is possible to control the activity of an antibiotic using light. 'The path from this idea to a working drug is very long, it could be another ten years.' In addition to switchable antibiotics not burdening the environment, they could also be used to treat very specific areas in the body. Feringa: 'You could take an inactive antibiotic for a skin infection and then activate it at the site where it is required. No useful bacteria in the intestines will be killed this way.'

Bacterial growth

For the time being, the switchable antibiotic is especially useful for research. 'It is possible to inhibit the growth of bacteria very specifically at a particular site and at a specific time.' You could, for example, investigate which factors influence the growth of the bacterium and the action of the antibiotic or the origin of resistance.

'But this article's most important message is that it is possible to externally control the action of a drug, composed of a relatively small molecule, in this case using light,' says Feringa. 'That is a whole new way of thinking about drug research.'


Story Source:

The above story is based on materials provided by University of Groningen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Willem A. Velema, Jan Pieter Van Der Berg, Mickel J. Hansen, Wiktor Szymanski, Arnold J. M. Driessen, and Ben L. Feringa. Optical control of antibacterial activity. Nature Chemistry, September 2013 DOI: 10.1038/nchem.1750)

Cite This Page:

University of Groningen. "Chemists develop switchable antibiotic." ScienceDaily. ScienceDaily, 16 September 2013. <www.sciencedaily.com/releases/2013/09/130916091019.htm>.
University of Groningen. (2013, September 16). Chemists develop switchable antibiotic. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/09/130916091019.htm
University of Groningen. "Chemists develop switchable antibiotic." ScienceDaily. www.sciencedaily.com/releases/2013/09/130916091019.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins