Featured Research

from universities, journals, and other organizations

Energy from tides and currents: Best arrangement of tidal sails device determined

Date:
September 17, 2013
Source:
American Institute of Physics (AIP)
Summary:
In the long sprint to find new sources of clean, low-cost power, slow and steady might win the race -- the slow-moving water of currents and tides, that is. Just as wind turbines tap into the energy of flowing air to generate electricity, hydrokinetic devices produce power from moving masses of water.

This image shows velocity and pressure around a string of submerged blades.
Credit: R.Fernandez-Feria/U.Malaga

In the long sprint to find new sources of clean, low-cost power, slow and steady might win the race -- the slow-moving water of currents and tides, that is. Just as wind turbines tap into the energy of flowing air to generate electricity, hydrokinetic devices produce power from moving masses of water.

Related Articles


In a paper appearing in AIP Publishing's Journal of Renewable and Sustainable Energy, Ramon Fernandez-Feria, a professor of fluid mechanics at Universidad de Mαlaga in Spain, and his colleagues Joaquin Ortega-Casanova and Daniel Cebriαn performed a computer simulation to determine the optimum configuration of one such system to enable it to extract the maximum amount of energy from any given current.

The system, developed by a Norwegian company called Tidal Sails AS, consists of a string of submerged blades or sails, connected via wire ropes, angled into the oncoming current. The rushing current generates large lift forces in the sails, and as they are pushed along through a continuous loop, they drive a generator to produce electricity.

A small-scale version of the Tidal Sails device is already in operation at a test facility constructed in a stream outside Haugesund, Norway. The pilot project has a power-producing capacity of 28 kilowatts; a full-scale version could generate several megawatts of power. Installing several such units in a tidal stream, the company says, could generate as much as 100 gigawatts of electricity per year.

In their analysis, the researchers found that the maximum amount of power could be generated using blades with a chord length (the width of the blade at a given distance along its length) equal to the separation between each individual blade, that are positioned at about a 79 degree angle relative to the oncoming current, and that move at a speed about one and half times faster than the current.

"The next step would be to refine the design of the device with further hydrodynamic numerical simulations, complemented with small-scale experiments," Fernandez-Feria said. "For instance, trying more efficient aerodynamic blade profiles, and different angles between the string of blades and the current."


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Cebrián, J. Ortega-Casanova, R. Fernandez-Feria. Lift and drag characteristics of a cascade of flat plates in a configuration of interest for a tidal current energy converter: Numerical simulations analysis. Journal of Renewable and Sustainable Energy, 2013; 5 (4): 043114 DOI: 10.1063/1.4816495

Cite This Page:

American Institute of Physics (AIP). "Energy from tides and currents: Best arrangement of tidal sails device determined." ScienceDaily. ScienceDaily, 17 September 2013. <www.sciencedaily.com/releases/2013/09/130917123609.htm>.
American Institute of Physics (AIP). (2013, September 17). Energy from tides and currents: Best arrangement of tidal sails device determined. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2013/09/130917123609.htm
American Institute of Physics (AIP). "Energy from tides and currents: Best arrangement of tidal sails device determined." ScienceDaily. www.sciencedaily.com/releases/2013/09/130917123609.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Winter Storm Means Dangerous Driving in South

Winter Storm Means Dangerous Driving in South

AP (Feb. 26, 2015) — A new winter storm is stretching across the south, making travel treacherous throughout the region. (Feb. 26) Video provided by AP
Powered by NewsLook.com
New York City Surrounded by Ice Floes

New York City Surrounded by Ice Floes

AP (Feb. 25, 2015) — The freezing temperatures that have plagued much of the eastern U.S. haven&apos;t spared New York City. The waterways around the island of Manhattan are filled with ice. (Feb. 25) Video provided by AP
Powered by NewsLook.com
Raw: Widespread Flooding in Northern Bolivia

Raw: Widespread Flooding in Northern Bolivia

AP (Feb. 25, 2015) — Bolivian Vice President Alvaro Garcia surveyed severe flood damage in the northern province of Pando, as people were evacuated from partially submerged houses by boat. (Feb. 25) Video provided by AP
Powered by NewsLook.com
The Amazon Keeps Its Green Thanks To The Sahara Desert

The Amazon Keeps Its Green Thanks To The Sahara Desert

Newsy (Feb. 25, 2015) — Satellite data shows the Amazon rainforest supports its lush flora with a little help from Sahara Desert dust. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins