Featured Research

from universities, journals, and other organizations

New technology for bioseparation

Date:
September 17, 2013
Source:
American Institute of Physics (AIP)
Summary:
Researchers have developed a simple new technique that is capable of separating tiny amounts of the target molecules from mixed solutions by single motion of magnet under a microchannel. Their technique may make pipettes and test tubes a thing of the past in some diagnostic applications and increase the accuracy and sensitivity of disease detection.

This is an illustration showing a simple new technique that is capable of separating tiny amounts of the target molecules from mixed solutions.
Credit: J.Wang/Brown

Separating target molecules in biological samples is a critical part of diagnosing and detecting diseases. Usually the target and probe molecules are mixed and then separated in batch processes that require multiple pipetting, tube washing and extraction steps that can affect accuracy.

Now a team of researchers at Brown University has developed a simple new technique that is capable of separating tiny amounts of the target molecules from mixed solutions by single motion of magnet under a microchannel. Their technique may make pipettes and test tubes a thing of the past in some diagnostic applications and increase the accuracy and sensitivity of disease detection.

The new platform developed by Anubhav Tripathi and his team at Brown doesn't rely on external pumps to mix samples or flow target molecules. Instead, their system is static and handy for researchers to use, according to Ms. Jingjing Wang, a graduate student pursuing her PhD. Bead-like magnetic particles are specifically modified by attaching short pieces of DNA to them that can capture target DNA molecules with specific sequences matching. Those are then separated for detection simply by pulling the magnetic beads along the channel. The process is simple, fast and specific.

This process has great applicability particularly for point-of-care platforms that are used to detect bacterial, viral infections and prion diseases by DNA, RNA or protein identification. Specific disease applications include testing for HIV and influenza, explained Wang.

"It can also be used to evaluate the expression of certain protein markers, such as troponin (an indicator of damage to the heart muscle) or any detection that requires binding and separation of known target biomolecules," she added.

Optimizing the system and characterizing the chip for biological assays was the biggest challenge for the research team as it required that both engineering as well as biological factors be considered, however the team is already developing assays using this new platform. A new microchip based Simple Method of Amplifying RNA Targets (SMART) assay developed to detect influenza from patient samples is already showing high agreement with Polymerase Chain Reaction (PCR), which is considered the "gold standard" for influenza diagnosis. The team's next challenge is developing assays using this technique to detect wild type and drug-resistant HIV in areas with limited resources such as Kenya and South Africa.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Jingjing Wang, Kenneth Morabito, Jay X. Tang, Anubhav Tripathi. Microfluidic platform for isolating nucleic acid targets using sequence specific hybridization. Biomicrofluidics, 2013; 7 (4): 044107 DOI: 10.1063/1.4816943

Cite This Page:

American Institute of Physics (AIP). "New technology for bioseparation." ScienceDaily. ScienceDaily, 17 September 2013. <www.sciencedaily.com/releases/2013/09/130917123946.htm>.
American Institute of Physics (AIP). (2013, September 17). New technology for bioseparation. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/09/130917123946.htm
American Institute of Physics (AIP). "New technology for bioseparation." ScienceDaily. www.sciencedaily.com/releases/2013/09/130917123946.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins