Featured Research

from universities, journals, and other organizations

A boost for cellular profiling

Date:
September 22, 2013
Source:
Ludwig Cancer Research
Summary:
A team of researchers report a dramatically improved technique for analyzing the genes expressed within a single cell — a capability of relevance to everything from basic research to future cancer diagnostics.

A team of researchers affiliated with Ludwig Cancer Research and the Karolinska Institutet in Sweden report in the current issue of Nature Methods a dramatically improved technique for analyzing the genes expressed within a single cell -- a capability of relevance to everything from basic research to future cancer diagnostics.

Related Articles


"There are cells in tumors and in healthy tissues that are not present in sufficient numbers to permit analysis using anything but single-cell methods," explains senior author, Rickard Sandberg, PhD. "This method allows us to identify rare and important subpopulations of cells in all sorts of tissues. We can also use it to tease apart, more rigorously than ever before, how the expression of unique suites of genes transform cells from one state to another as, say, an embryo develops into an organism, or a tumor becomes metastatic."

Traditional approaches, which depend on the collective analysis of gene expression in millions of cells at once, tend to obscure biologically significant differences in the genes expressed by specialized cells within a particular kind of tissue. Single-cell analysis of gene expression overcomes this limitation. The leading method for such analysis -- Smart-seq -- was developed in 2012 by the biotechnology firm Illumina, together with Sandberg's laboratory.

To develop the new technique, named Smart-seq2, Sandberg's team conducted more than 450 experiments to improve upon their initial method. The new procedure consistently captures three to four times as many RNA molecules, which often translates into 2,000 more genes per cell than current methods allow. It also captures far more full-length gene sequences, a steep challenge in such studies, which often capture only partial sequences of expressed genes. This will permit researchers to conduct a more granular analysis of how subtle differences between the same genes in different people -- known as single nucleotide polymorphisms (or SNPs) -- contribute to differences in biology and disease.

The new method is likely to be of great value to cancer research. Identifying rare sub-populations of cells in tumors and understanding their role in the survival and progression of cancers can provide invaluable information for the development of diagnostics and targeted therapies. A study recently published by Ludwig researchers described, for example, how certain subpopulations of cells in melanomas can be pushed into a drug-susceptible state and then destroyed by chemotherapy. More such strategies might be devised as researchers get a better handle on the cellular species found in different types of tumors, and the patterns of gene expression that define them.

Because Smart-seq2 relies on off-the-shelf reagents, it costs roughly a twentieth as much as the commercialized kit, which should allow researchers to conduct sophisticated analyses of single cells on a much larger scale. It can also be improved further by the scientific community, since its constituent components and rationale are both open to the public.

Armed with the more effective and affordable Smart-seq2, Sandberg's lab is now moving ahead on projects that require a large-scale, single-cell gene expression analysis. "Now all researchers can do their own single-cell gene expression analysis by buying the components of the process described in this paper and assembling their own kits," says Sandberg.


Story Source:

The above story is based on materials provided by Ludwig Cancer Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Simone Picelli, Εsa K Bjφrklund, Omid R Faridani, Sven Sagasser, Gφsta Winberg, Rickard Sandberg. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods, 2013; DOI: 10.1038/nmeth.2639

Cite This Page:

Ludwig Cancer Research. "A boost for cellular profiling." ScienceDaily. ScienceDaily, 22 September 2013. <www.sciencedaily.com/releases/2013/09/130922154937.htm>.
Ludwig Cancer Research. (2013, September 22). A boost for cellular profiling. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/09/130922154937.htm
Ludwig Cancer Research. "A boost for cellular profiling." ScienceDaily. www.sciencedaily.com/releases/2013/09/130922154937.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins