Featured Research

from universities, journals, and other organizations

New research shows how heart cells communicate to regulate heart activity

Date:
September 24, 2013
Source:
University of Western Ontario
Summary:
New research is leading to a better understanding of what happens during heart failure, knowledge that could lead to better therapeutics or a more accurate predictor of risk. The research found the heart is regulated not only by nervous systems but also by heart cells sending messages to each other through the release of the neurotransmitter acetylcholine.

New research from Western University (London, Canada) is leading to a better understanding of what happens during heart failure; knowledge that could lead to better therapeutics or a more accurate predictor of risk. The research led by Robarts Research Institute scientists Robert Gros, PhD, and Marco Prado, PhD, along with graduate student Ashbeel Roy found the heart is regulated not only by nervous systems but also by heart cells sending messages to each other through the release of the neurotransmitter acetylcholine (ACh). The research has been published online by The FASEB Journal.

As Gros explains, heart activity is regulated by two nervous systems: the sympathetic and the parasympathetic. The sympathetic acts like an accelerator, speeding up the heart and the parasympathetic acts like a brake, decreasing the heart rate. When these systems get dysregulated or out of whack, it can lead to heart failure.

"But the heart is not well innervated or in other words, there are very few nerves to control the heart. So we wanted to know how the signal from the nerve is communicated throughout the heart. A neuronal system is nerve-based but now we're talking about a non-neuronal system, which means it's not in any nerve tissue but found in the heart cells themselves," says Gros, an associate professor in the Departments of Physiology & Pharmacology and Medicine at Western's Schulich School of Medicine & Dentistry and a scientist in the Vascular Biology Research Group at Robarts. "We've shown how the nerve sends a signal and individual heart cells pick up that signal; they can transduce that signal by the release of ACh from one cell to the next. It's the propagation of this signal that regulates the heart. Now we need to look at how this system changes in heart failure."

In collaboration with Robarts' scientist Vania Prado, PhD, Gros tested the theory using mice which were engineered so that their heart cells exclusively, could not release ACh. Under non-stressful conditions the mutant mice had normal heart rates. But when they exercised, these mice had a far greater increase in their heart rate, and it took longer for them to return to their pre-exercise heart rate, as compared to control mice. The results suggest the heart cell derived ACh may boost parasympathetic signaling to counterbalance sympathetic activity.

Gros calls the research a kick start, because if this non neuronal source of ACh is playing such an important role in the heart, it's probably important in other organs as well. The research was supported by the Heart and Stroke Foundation of Ontario, the Canadian Institutes of Health Research and the Canada Foundation for Innovation.


Story Source:

The above story is based on materials provided by University of Western Ontario. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Roy, W. C. Fields, C. Rocha-Resende, R. R. Resende, S. Guatimosim, V. F. Prado, R. Gros, M. A. M. Prado. Cardiomyocyte-secreted acetylcholine is required for maintenance of homeostasis in the heart. The FASEB Journal, 2013; DOI: 10.1096/fj.13-238279

Cite This Page:

University of Western Ontario. "New research shows how heart cells communicate to regulate heart activity." ScienceDaily. ScienceDaily, 24 September 2013. <www.sciencedaily.com/releases/2013/09/130924113458.htm>.
University of Western Ontario. (2013, September 24). New research shows how heart cells communicate to regulate heart activity. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2013/09/130924113458.htm
University of Western Ontario. "New research shows how heart cells communicate to regulate heart activity." ScienceDaily. www.sciencedaily.com/releases/2013/09/130924113458.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins