Featured Research

from universities, journals, and other organizations

Hope for halting incurable citrus disease

Date:
September 25, 2013
Source:
University of California - Davis
Summary:
Using DNA sequencing technologies, a plant scientist has painted a broad picture of how the devastating disease Huonglongbing, or citrus greening, impacts citrus trees before they even show signs of infection.

The findings indicate the bacterial disease interferes with starch and sugar metabolism in young and matures leaves and fruit.
Credit: Anna / Fotolia

The devastating disease Huonglongbing, or citrus greening, looms darkly over the United States, threatening to wipe out the nation's citrus industry, whose fresh fruit alone was valued at more than $3.4 billion in 2012.

Recently, however, a research team led by a University of California, Davis, plant scientist used DNA sequencing technologies to paint a broad picture of how citrus greening impacts trees before they even show signs of infection, offering hope for developing diagnostic tests and treatments for the currently incurable disease.

"Florida is seemingly in the death grip of citrus greening, and many experts believe it is just a matter of time before the disease appears full force in California," said plant molecular biologist Abhaya Dandekar, lead author on the study.

The new findings indicate that the bacterial disease interferes with starch and sugar metabolism in young and matures leaves and fruit, while also wreaking havoc with hormonal networks that are key to the trees' ability to fend of infections. Study results will be reported Sept. 25 in the journal PLOS ONE.

"Because the disease has a long latent phase during which there are no symptoms of infection and the bacteria are resistant to being grown in the laboratory, the only option for halting transmission of citrus greening has been to apply chemical pesticides to control the insect that spreads the bacteria," Dandekar said.

About citrus greening:

HLB, or citrus greening, is the most destructive citrus disease worldwide. It is caused by three species of the Candidatus Liberibacter bacteria, including Candidatus Liberibacter asiaticus, which is known by the acronym CaLas. These bacteria are carried from tree to tree by two species of the citrus psyllid, a winged insect that is about one-eighth inch long and attaches itself to the underside of the trees' leaves.

As the citrus psyllid feeds on a leaf, it can pick up the bacteria from a diseased tree and introduce the bacteria to a non-infected tree. These disease-causing bacteria reside in the tree's phloem -- the vascular tissue that carries vital nutrients throughout the tree.

The disease affects most citrus species, causing yellowing of shoots, blotchy and mottled leaves, lopsided and poorly colored fruit and loss of viable seeds. The fruit of diseased trees is hard, misshapen and bitter, and the infected trees die within a few years.

Other than one infected backyard tree found in 2012 in the Southern California community of Hacienda Heights, the disease has not been detected in California. However the citrus psyllid that transmits the bacteria was first found in California in 2008 and has since been identified in San Diego, Imperial, Riverside, San Bernardino, Orange, Los Angeles, Ventura, Santa Barbara, Kern and Tulare counties, resulting in quarantines and restricted areas.

The new study:

In this new study, the researchers studied four categories of healthy and diseased citrus trees, with the goal of better understanding how HLB affects trees physiologically during the very early stages of infection.

"Earlier sequencing of the CaLas bacteria genome showed that there were no toxins or enzymes that would destroy plant cell walls, or specialized secretion systems associated with citrus HLB," Dandekar said.

"Because these factors, which normally accompany plant diseases, were not present, we suspected that the disease was causing metabolic imbalances or interfering with nutrient transport in the infected trees," he said.

The researchers used gene sequencing technology to study the "transcriptome," which is the collection of RNA found in the tree leaves and fruit.

Their analysis confirmed that in infected trees, HLB disease caused starch to accumulate in the leaves, blocking nutrient transport through the phloem and decreasing photosynthesis. They also found that normal metabolism of sucrose, a sugar also key to photosynthesis, was disrupted.

Furthermore, the researchers discovered that HLB interfered with the regulation of hormones such as salicylic acid, jasmonic acid and ethylene, which are "the backbone" of the plant innate immune response. And they found that infected trees also had changes in the metabolism of important amino acids that serve as a reservoir for organic nitrogen in many plants. The nitrogen is required to stimulate the plant immune response.

Cause for hope:

The researchers anticipate that these discoveries will lead the way to new tests for detecting the bacteria and thus the presence of HLB in orchard trees.

They also suggest that it may be possible to develop several short-term treatments for infected trees. Such therapeutic procedures might rely on using hormones and other small molecules to restore the infected tree's normal metabolism or boosting the tree's innate immune response to effectively fight the infection.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Federico Martinelli, Russell L. Reagan, Sandra L. Uratsu, My L. Phu, Ute Albrecht, Weixiang Zhao, Cristina E. Davis, Kim D. Bowman, Abhaya M. Dandekar. Gene Regulatory Networks Elucidating Huanglongbing Disease Mechanisms. PLoS ONE, 2013; 8 (9): e74256 DOI: 10.1371/journal.pone.0074256

Cite This Page:

University of California - Davis. "Hope for halting incurable citrus disease." ScienceDaily. ScienceDaily, 25 September 2013. <www.sciencedaily.com/releases/2013/09/130925185413.htm>.
University of California - Davis. (2013, September 25). Hope for halting incurable citrus disease. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/09/130925185413.htm
University of California - Davis. "Hope for halting incurable citrus disease." ScienceDaily. www.sciencedaily.com/releases/2013/09/130925185413.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
Argentina Worries Over Decline of Soybean Prices

Argentina Worries Over Decline of Soybean Prices

AFP (Sep. 27, 2014) The drop in price of soy on the international market is a cause for concern in Argentina, as soybean exports are a major source of income for Latin America's third largest economy. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Mama Bear, Cubs Hang out in California Backyard

Mama Bear, Cubs Hang out in California Backyard

Reuters - US Online Video (Sep. 27, 2014) A mama bear and her two cubs climb trees, wrestle and take naps in the backyard of a Monrovia, California home. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins