Featured Research

from universities, journals, and other organizations

Cold, salty and promiscuous: Gene-shuffling microbes dominate Antarctica's Deep Lake

Date:
September 30, 2013
Source:
DOE/Joint Genome Institute
Summary:
Antarctica's Deep Lake is a saltwater ecosystem that remains liquid in extreme cold. For the first time, researchers describe a complete ecological picture of the microbial community thriving in Deep Lake.

This is Deep Lake in Antartica. The water in the 36-metre deep lake is so salty it remains in liquid form down to a temperature of minus 20 degrees Celsius.
Credit: UNSW

Sequestered in Antarctica's Vestfold Hills, Deep Lake became isolated from the ocean 3,500 years ago by the Antarctic continent rising, resulting in a saltwater ecosystem that remains liquid in extreme cold, and providing researchers a unique niche for studying the evolution of the microbes that now thrive under such conditions. Deep Lake's microscopic inhabitants are dominated by haloarchaea, microbes that require high salt concentrations to grow and are naturally adapted to conditions -- at minus 20C -- that would prove lethally cold to other organisms. In a detailed analysis published online the week of September 30, 2013 in the journal Proceedings of the National Academy of Sciences (PNAS), researchers have, for the first time, been able to get a complete ecological picture of the Deep Lake microbial community.

Related Articles


A team led by Rick Cavicchioli of the University of New South Wales, Australia partnered with the U.S. Department of Energy Joint Genome Institute (DOE JGI) to generate sequence data from DNA isolated from individual microbes and compared them with metagenomic (microbial community) information sampled at various depths of Deep Lake.

"Understanding how haloarchaea can thrive in Deep Lake could be used to develop engineering concepts for reducing energy costs in a variety of situations, such as for cleaning up contaminated sites in permanently or seasonally cold regions," Cavicchioli said. Owing to the ability of salt-loving enzymes to function under extremes, he suggests they could also be used as catalysts for peptide synthesis and enhanced oil recovery, and can function in water-organic solvent mixtures. "These enzymes will be especially useful for transforming contaminated sites with particularly high levels of petroleum-based products," he added.

Deep Lake's extremes have rendered the microbial neighborhood rather homogeneous. Four isolates in the study represented about 72 percent of the cells in the community. Though gene exchange across species boundaries is considered infrequent, the researchers observed that haloarchaea living in the Lake's hypersaline environment practice it comparatively often, like neighbors "chewing the fat" in a small-town coffee klatch. "It's intriguing that while gene exchange is rampant, species lineages appear to be maintained by virtue of each species having a high level of specialization, enabling niche partitioning and peaceful coexistence," said Cavicchioli of their findings. "Haloarchaea are known for being 'promiscuous,' that is, prone to exchange DNA between themselves. Our study demonstrated that this exchange occurs at a much higher level than has previously been documented in nature. They communicate, share, specialize, and coexist."

What distinguishes this "conversation" is that the haloarchaea of Deep Lake exchange the information of DNA not just between species but among distinct genera, and moreover in huge tranches, some 35,000 letters of code, with not a letter out of place. While it may be slow, that give-and-take is chock full of essential information and the word gets around the community. "The long stretches of highly identical shared sequence between the different lake organisms spurred a strong suspicion of potential cross-contamination at first," said Tanja Woyke, Microbial Program Lead at the DOE JGI and co-author of the study. "By painstaking validation of the manually finished and curated genomes, however, we were able to exclude any process-introduced artifacts and confirm that this is true inter-genera gene exchange."

Cavicchioli noted that, "as the content being shifted around lack core genes, it speaks to these microbes' ability to be flexible and collaborative. This shuttled gene content could confer such benefits as resistance to viruses or bolster their ability to respond to specific environmental factors. Moreover, the markers that we analyzed indicated that a high level of gene exchange occurs throughout the Deep Lake community."

One particular microbial player, dubbed tADL, represented about 44 percent of the cell content of the lake community, which is one of the least productive environments on the planet with respect to synthesis of organic compounds from carbon dioxide. Most life on earth is dependent on this process, but microbial life in Deep Lake has only six generations of cell division annually, so tADL's comparatively "high energy" metabolism makes it adept at degrading carbohydrates, with a particular taste for glycerol, a natural byproduct of the light-harvesting algae. "A key thing about what they eat is that by choosing different food sources they can coexist and continue to reproduce and eke out a living in relative harmony," said Cavicchioli.

Cavicchioli acknowledged that the PNAS paper represents the synthesis of the more striking findings that arose from merging and analyzing collective data sets that have been assembled over the last eight years. Along the way, a major milestone logged was the genome sequencing and analysis of the first member of the archaeal branch of the tree of life ever isolated from a polar environment.

"Every time we 'poke an omics stick' in there we find things we never expected," Cavicchioli said. "Each lake also has its own unique characteristics, so there is a lot more to be discovered. These Antarctic expeditions represent big logistical investments, with millions in funding from the Australian Antarctic Division and the Australian Antarctic Science Program leveraging the powerful resources of JGI. As a long-term investment strategy, this has proven to be an excellent model of how a flexible group of clever scientists can provide a sure path for enabling strong science to come to fruition."


Story Source:

The above story is based on materials provided by DOE/Joint Genome Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew Z. DeMaere, Timothy J. Williams, Michelle A. Allen, Mark V. Brown, John A. E. Gibson, John Rich, Federico M. Lauro, Michael Dyall-Smith, Karen W. Davenport, Tanja Woyke, Nikos C. Kyrpides, Susannah G. Tringe, and Ricardo Cavicchioli. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. PNAS, September 30, 2013 DOI: 10.1073/pnas.1307090110

Cite This Page:

DOE/Joint Genome Institute. "Cold, salty and promiscuous: Gene-shuffling microbes dominate Antarctica's Deep Lake." ScienceDaily. ScienceDaily, 30 September 2013. <www.sciencedaily.com/releases/2013/09/130930152743.htm>.
DOE/Joint Genome Institute. (2013, September 30). Cold, salty and promiscuous: Gene-shuffling microbes dominate Antarctica's Deep Lake. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2013/09/130930152743.htm
DOE/Joint Genome Institute. "Cold, salty and promiscuous: Gene-shuffling microbes dominate Antarctica's Deep Lake." ScienceDaily. www.sciencedaily.com/releases/2013/09/130930152743.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Praying Mantis Looks Long Before It Leaps

Praying Mantis Looks Long Before It Leaps

Reuters - Innovations Video Online (Mar. 5, 2015) Slowed-down footage of the leaps of praying mantises show the insect&apos;s extraordinary precision, say researchers. Video provided by Reuters
Powered by NewsLook.com
Octopus Grabs Camera and Turns It Around On Photographer

Octopus Grabs Camera and Turns It Around On Photographer

Buzz60 (Mar. 5, 2015) A photographer got the shot of a lifetime, or rather an octopus did, when it grabbed the camera and turned it around to take an amazing picture of the photographer. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Ringling Bros. Eliminating Elephant Acts

Ringling Bros. Eliminating Elephant Acts

AP (Mar. 5, 2015) The Ringling Bros. and Barnum & Bailey Circus is ending its iconic elephant acts. The circus&apos; parent company, Feld Entertainment, told the AP exclusively that the acts will be phased out by 2018 over growing public concern about the animals. (March 5) Video provided by AP
Powered by NewsLook.com
Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins