Featured Research

from universities, journals, and other organizations

Graphene with aroma: New production method broadens prospects for 'magic' material

Date:
October 1, 2013
Source:
Physikalisch-Technische Bundesanstalt (PTB)
Summary:
New production method broadens the prospects for an improved use of the "magic material" -- many different forms are possible.

The cover picture of the scientific journal "Advanced Materials" gives a schematic representation of the conversion of the monolayer of the complex molecule biphenyl thiol in the two-dimensional graphene crystal by electron irradiation and thermal treatment.
Credit: Fig.: Advanced Materials 25 (2013). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

New production method broadens the prospects for an improved use of the "magic material" -- many different forms are possible.

Related Articles


Graphene, a crystal composed of only one layer of carbon atoms arranged in a regular hexagon, is regarded as a material which is believed to be capable of performing 'miracles', in particular in the fields of electronics, sensor technology and display technology, but also in metrology. Only four years after the first successful development of graphene, its discoverers Geim and Novoselov were awarded a Nobel Prize. As the original preparation method (flaking of single atomic layers of graphite) does not offer a good prospects for broad technological use, many groups of researchers are concentrating very strongly on the development of alternative manufacturing procedures. A completely new and very flexible variant has now been developed by the group of Andrey Turchanin from the University of Bielefeld in cooperation with the University of Ulm and three departments of the Physikalisch-Technische Bundesanstalt (PTB) and this has been published in the scientific journal Advanced Materials.

In contrast to the conventional methods where graphene is manufactured, for example, by precipitation of carbon atoms from the gas phase or by thermal graphitization of silicon carbide, the scientists selected aromatic molecules as a starting point in this work. As substrates, both copper single-crystals and inexpensive polycrystalline copper foils were used. By irradiation with low-energy electrons and subsequent thermal annealing, it was then possible to convert a self-organized single-layer of the molecule biphenyl thiol, which had precipitated on the copper surface, into graphene.

To investigate the chemical and physical properties of the graphene manufactured in this way, different characterization methods from Ulm and Bielefeld universities and from PTB were applied, for example, scanning tunnelling microscopy, transmission electron microscopy, Raman spectroscopy as well as electric transport measurements at low temperatures and high magnetic fields. All these measurements confirm that graphene of excellent crystalline and electronic quality had actually been manufactured from the aromatic molecule.

The flexibility of the electron irradiation, which is possible both over large areas and also with excellent spatial resolution at small, well-defined places, now allows graphene structures of basically any form to be manufactured, e.g. quantum dots, nanoribbons or other nano-geometries with specific functionality. The selection of the temperature in the thermal conversion step also allows the degree of crystallinity and the characteristics of the graphene depending on it to be adjusted.

Additional advantages result from the versatility of the method of self-organized coating. It can be performed with different aromatic molecules which could, for example, also contain doping atoms for electronic doping of the final product. Applied in multiple layers, so-called bi-layer or multi-layer graphene could be manufactured, whose changed electronic band structure expands the potential applications of single-layer graphene. Likewise, other substrates than the copper used here (for example other metals, semiconductors, isolators) can be used. In addition, it should also be possible to manufacture graphene on any three-dimensional surfaces, as molecular self-organization also takes place on curved surfaces.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.


Journal Reference:

  1. Dan G. Matei, Nils-Eike Weber, Simon Kurasch, Stefan Wundrack, Mirosław Woszczyna, Miriam Grothe, Thomas Weimann, Franz Ahlers, Rainer Stosch, Ute Kaiser, Andrey Turchanin. Functional Single-Layer Graphene Sheets from Aromatic Monolayers. Advanced Materials, 2013; 25 (30): 4146 DOI: 10.1002/adma.201300651

Cite This Page:

Physikalisch-Technische Bundesanstalt (PTB). "Graphene with aroma: New production method broadens prospects for 'magic' material." ScienceDaily. ScienceDaily, 1 October 2013. <www.sciencedaily.com/releases/2013/10/131001091340.htm>.
Physikalisch-Technische Bundesanstalt (PTB). (2013, October 1). Graphene with aroma: New production method broadens prospects for 'magic' material. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2013/10/131001091340.htm
Physikalisch-Technische Bundesanstalt (PTB). "Graphene with aroma: New production method broadens prospects for 'magic' material." ScienceDaily. www.sciencedaily.com/releases/2013/10/131001091340.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com
Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Samsung Unveils $30,000 'Dream Doghouse'

Samsung Unveils $30,000 'Dream Doghouse'

Buzz60 (Mar. 5, 2015) On display at the Crufts dog show in England, the &apos;dog kennel of the future&apos; comes with features like a doggie treadmill and Samsung tablet. Mike Janela (@mikejanela) has more. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins