Featured Research

from universities, journals, and other organizations

Aggressive fungal pathogen causes mold in fruits, vegetables

Date:
October 3, 2013
Source:
University of California - Riverside
Summary:
A research team has discovered the mechanism by which an aggressive fungal pathogen infects almost all fruits and vegetables. The team discovered a novel virulence mechanism of Botrytis cinerea, a pathogen that can infect more than 200 plant species, causing serious gray mold disease on almost all fruits and vegetables that have been around, even at times in the refrigerator, for more than a week.

The fungal pathogen Botrytis cinerea causes mold on strawberries.
Credit: University of California, Riverside

A research team led by a molecular plant pathologist at the University of California, Riverside has discovered the mechanism by which an aggressive fungal pathogen infects almost all fruits and vegetables.

Related Articles


The team discovered a novel "virulence mechanism" -- the mechanism by which infection takes place -- of Botrytis cinerea. This pathogen can infect more than 200 plant species, causing serious gray mold disease on almost all fruits and vegetables that have been around, even at times in the refrigerator, for more than a week.

Study results appear in the Oct. 4 issue of the journal Science.

Many bacterial, fungal and oomycete pathogens deliver protein effectors -- molecules the pathogens secrete -- into the cells of hosts to manipulate and, eventually, compromise host immunity.

The new study represents the first example of a fungal pathogen delivering RNA effectors, specifically small RNA effector molecules, into host cells to suppress host immunity and achieve infection of the host plant.

"To date, almost all the pathogen effectors studied or discovered have been proteins," said lead author Hailing Jin, a professor of plant pathology and microbiology. "Ours is the first study to add the RNA molecule to the list of effectors. We expect our work will help in the development of new means to control aggressive pathogens."

Small RNAs guide gene silencing in a wide range of eukaryotic organisms. In the case of Botrytis cinerea, small RNAs silence the expression of host defense genes, resulting in the host plant cells being less able to resist the fungal attack. The process is similar to how protein effectors weaken host immunity in the case of most pathogens.

"What we have discovered is a naturally-occurring cross-kingdom RNAi phenomenon between a fungal pathogen and a plant host that serves as an advanced virulence mechanism," Jin said.

RNA interference or RNAi is a conserved gene regulatory mechanism that is guided by small RNAs for silencing (or suppressing) genes.

Next, Jin and colleagues plan to continue investigating if the novel mechanism they discovered also exists in other aggressive pathogens.


Story Source:

The above story is based on materials provided by University of California - Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Weiberg, M. Wang, F.-M. Lin, H. Zhao, Z. Zhang, I. Kaloshian, H.-D. Huang, H. Jin. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science, 2013; 342 (6154): 118 DOI: 10.1126/science.1239705

Cite This Page:

University of California - Riverside. "Aggressive fungal pathogen causes mold in fruits, vegetables." ScienceDaily. ScienceDaily, 3 October 2013. <www.sciencedaily.com/releases/2013/10/131003162951.htm>.
University of California - Riverside. (2013, October 3). Aggressive fungal pathogen causes mold in fruits, vegetables. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/10/131003162951.htm
University of California - Riverside. "Aggressive fungal pathogen causes mold in fruits, vegetables." ScienceDaily. www.sciencedaily.com/releases/2013/10/131003162951.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins