Featured Research

from universities, journals, and other organizations

Aggressive fungal pathogen causes mold in fruits, vegetables

Date:
October 3, 2013
Source:
University of California - Riverside
Summary:
A research team has discovered the mechanism by which an aggressive fungal pathogen infects almost all fruits and vegetables. The team discovered a novel virulence mechanism of Botrytis cinerea, a pathogen that can infect more than 200 plant species, causing serious gray mold disease on almost all fruits and vegetables that have been around, even at times in the refrigerator, for more than a week.

The fungal pathogen Botrytis cinerea causes mold on strawberries.
Credit: University of California, Riverside

A research team led by a molecular plant pathologist at the University of California, Riverside has discovered the mechanism by which an aggressive fungal pathogen infects almost all fruits and vegetables.

The team discovered a novel "virulence mechanism" -- the mechanism by which infection takes place -- of Botrytis cinerea. This pathogen can infect more than 200 plant species, causing serious gray mold disease on almost all fruits and vegetables that have been around, even at times in the refrigerator, for more than a week.

Study results appear in the Oct. 4 issue of the journal Science.

Many bacterial, fungal and oomycete pathogens deliver protein effectors -- molecules the pathogens secrete -- into the cells of hosts to manipulate and, eventually, compromise host immunity.

The new study represents the first example of a fungal pathogen delivering RNA effectors, specifically small RNA effector molecules, into host cells to suppress host immunity and achieve infection of the host plant.

"To date, almost all the pathogen effectors studied or discovered have been proteins," said lead author Hailing Jin, a professor of plant pathology and microbiology. "Ours is the first study to add the RNA molecule to the list of effectors. We expect our work will help in the development of new means to control aggressive pathogens."

Small RNAs guide gene silencing in a wide range of eukaryotic organisms. In the case of Botrytis cinerea, small RNAs silence the expression of host defense genes, resulting in the host plant cells being less able to resist the fungal attack. The process is similar to how protein effectors weaken host immunity in the case of most pathogens.

"What we have discovered is a naturally-occurring cross-kingdom RNAi phenomenon between a fungal pathogen and a plant host that serves as an advanced virulence mechanism," Jin said.

RNA interference or RNAi is a conserved gene regulatory mechanism that is guided by small RNAs for silencing (or suppressing) genes.

Next, Jin and colleagues plan to continue investigating if the novel mechanism they discovered also exists in other aggressive pathogens.


Story Source:

The above story is based on materials provided by University of California - Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Weiberg, M. Wang, F.-M. Lin, H. Zhao, Z. Zhang, I. Kaloshian, H.-D. Huang, H. Jin. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science, 2013; 342 (6154): 118 DOI: 10.1126/science.1239705

Cite This Page:

University of California - Riverside. "Aggressive fungal pathogen causes mold in fruits, vegetables." ScienceDaily. ScienceDaily, 3 October 2013. <www.sciencedaily.com/releases/2013/10/131003162951.htm>.
University of California - Riverside. (2013, October 3). Aggressive fungal pathogen causes mold in fruits, vegetables. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/10/131003162951.htm
University of California - Riverside. "Aggressive fungal pathogen causes mold in fruits, vegetables." ScienceDaily. www.sciencedaily.com/releases/2013/10/131003162951.htm (accessed April 24, 2014).

Share This



More Plants & Animals News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Monkeys Are Better At Math Than We Thought, Study Shows

Monkeys Are Better At Math Than We Thought, Study Shows

Newsy (Apr. 23, 2014) A Harvard University study suggests monkeys can use symbols to perform basic math calculations. Video provided by Newsy
Powered by NewsLook.com
Raw: Leopard Bites Man in India

Raw: Leopard Bites Man in India

AP (Apr. 22, 2014) A leopard caused panic in the city of Chandrapur on Monday when it sprung from the roof of a house and charged at rescue workers. (April 22) Video provided by AP
Powered by NewsLook.com
Iowa College Finds Beauty in Bulldogs

Iowa College Finds Beauty in Bulldogs

AP (Apr. 22, 2014) Drake University hosts 35th annual Beautiful Bulldog Contest. (April 21) Video provided by AP
Powered by NewsLook.com
805-Pound Shark Caught Off The Coast Of Florida

805-Pound Shark Caught Off The Coast Of Florida

Newsy (Apr. 22, 2014) One Florida fisherman caught a 805-pound shark off the coast of Florida earlier this month. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins