Featured Research

from universities, journals, and other organizations

Lung structure shaped by fluid dynamics and transport

Date:
October 4, 2013
Source:
Springer Science+Business Media
Summary:
Physicists suggest how evolution has shaped our lungs through successive optimizations of physical parameters such as conservation of energy and speed of delivery. Our respiratory system consists of a bronchial tree designed to transport air through the lungs combined with an alveolar system designed to capture the oxygen. Both are subjected to different type of optimizations. Only tree-like structures, the paper shows, are able to efficiently feed organs above a small size, below which organs are solely fed by diffusion.

How fluid dynamics and transport shaped the structure of our lungs in the course of evolution.

Related Articles


Two French physicists, Bernard Sapoval and Marcel Filoche from Ιcole Polytechnique in Palaiseau, France, suggest in a study published in EPJ E how evolution has shaped our lungs through successive optimisations of physical parameters such as conservation of energy and speed of delivery.

Our respiratory system consists of a bronchial tree designed to transport air through the lungs combined with an alveolar system designed to capture the oxygen. Both are subjected to different type of optimisations. Only tree-like structures, the paper shows, are able to efficiently feed organs above a small size, below which organs are solely fed by diffusion. Specifically, the authors first show that energy losses of fluids during transport are minimised in a tree-like structure of fractal dimension 3. Second, they indicate that this optimised tree is also 'space-filling' to optimise proximity to the working alveolae. Third, they show that a system designed to reduce the time spent to transport fluids throughout an organ has the same fractal optimisation.

In an evolutionary perspective, the size of primitive multi-cellular species was necessarily limited by nutrients' diffusion speed. One hypothesis defended in this study is that larger primitive animals have thus been conditioned by a progressive Darwinian selection of tree-like 'space-filling' nutrient distribution systems. Then, their genetic material was ready to be shared to allow mammalian respiration. Successive inspirations and expirations cycles had to be optimised so that external air could reach the alveoli before expiration starts. This form of evolutionary tinkering, the authors believe, would have allowed the emergence of mammalian respiration-as opposed to fish-style breathing through gills.

Similarly, the paper shows that the structure of the alveolar system is indeed optimal to allow efficient transport of oxygen from the air to the blood. This new insight into the lung's evolutionary process stems from the physical principles underlying the architecture of living systems.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bernard Sapoval, Marcel Filoche. Optimisations and evolution of the mammalian respiratory system. The European Physical Journal E, 2013; 36 (9) DOI: 10.1140/epje/i2013-13105-1

Cite This Page:

Springer Science+Business Media. "Lung structure shaped by fluid dynamics and transport." ScienceDaily. ScienceDaily, 4 October 2013. <www.sciencedaily.com/releases/2013/10/131004090315.htm>.
Springer Science+Business Media. (2013, October 4). Lung structure shaped by fluid dynamics and transport. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2013/10/131004090315.htm
Springer Science+Business Media. "Lung structure shaped by fluid dynamics and transport." ScienceDaily. www.sciencedaily.com/releases/2013/10/131004090315.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ruins Thought To Be Port Actually Buried Greek City

Ruins Thought To Be Port Actually Buried Greek City

Newsy (Nov. 24, 2014) — Media is calling it an "underwater Pompeii." Researchers have found ruins off the coast of Delos. Video provided by Newsy
Powered by NewsLook.com
Amphipolis Tomb Architraves Reveal Faces

Amphipolis Tomb Architraves Reveal Faces

AFP (Nov. 22, 2014) — Faces in an area of mosaics is the latest find by archaeologists at a recently discovered tomb dating back to fourth century BC and the time of Alexander the Great in Greece. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
US Returns Looted Artifacts to Thailand

US Returns Looted Artifacts to Thailand

AFP (Nov. 19, 2014) — The United States has returns over 500 vases, bowls, axes, and other ancient artifacts mostly from the Ban Chiang archaeological site which were illegally looted from Thailand decades ago. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins