Featured Research

from universities, journals, and other organizations

Lung structure shaped by fluid dynamics and transport

Date:
October 4, 2013
Source:
Springer Science+Business Media
Summary:
Physicists suggest how evolution has shaped our lungs through successive optimizations of physical parameters such as conservation of energy and speed of delivery. Our respiratory system consists of a bronchial tree designed to transport air through the lungs combined with an alveolar system designed to capture the oxygen. Both are subjected to different type of optimizations. Only tree-like structures, the paper shows, are able to efficiently feed organs above a small size, below which organs are solely fed by diffusion.

How fluid dynamics and transport shaped the structure of our lungs in the course of evolution.

Related Articles


Two French physicists, Bernard Sapoval and Marcel Filoche from Ιcole Polytechnique in Palaiseau, France, suggest in a study published in EPJ E how evolution has shaped our lungs through successive optimisations of physical parameters such as conservation of energy and speed of delivery.

Our respiratory system consists of a bronchial tree designed to transport air through the lungs combined with an alveolar system designed to capture the oxygen. Both are subjected to different type of optimisations. Only tree-like structures, the paper shows, are able to efficiently feed organs above a small size, below which organs are solely fed by diffusion. Specifically, the authors first show that energy losses of fluids during transport are minimised in a tree-like structure of fractal dimension 3. Second, they indicate that this optimised tree is also 'space-filling' to optimise proximity to the working alveolae. Third, they show that a system designed to reduce the time spent to transport fluids throughout an organ has the same fractal optimisation.

In an evolutionary perspective, the size of primitive multi-cellular species was necessarily limited by nutrients' diffusion speed. One hypothesis defended in this study is that larger primitive animals have thus been conditioned by a progressive Darwinian selection of tree-like 'space-filling' nutrient distribution systems. Then, their genetic material was ready to be shared to allow mammalian respiration. Successive inspirations and expirations cycles had to be optimised so that external air could reach the alveoli before expiration starts. This form of evolutionary tinkering, the authors believe, would have allowed the emergence of mammalian respiration-as opposed to fish-style breathing through gills.

Similarly, the paper shows that the structure of the alveolar system is indeed optimal to allow efficient transport of oxygen from the air to the blood. This new insight into the lung's evolutionary process stems from the physical principles underlying the architecture of living systems.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bernard Sapoval, Marcel Filoche. Optimisations and evolution of the mammalian respiratory system. The European Physical Journal E, 2013; 36 (9) DOI: 10.1140/epje/i2013-13105-1

Cite This Page:

Springer Science+Business Media. "Lung structure shaped by fluid dynamics and transport." ScienceDaily. ScienceDaily, 4 October 2013. <www.sciencedaily.com/releases/2013/10/131004090315.htm>.
Springer Science+Business Media. (2013, October 4). Lung structure shaped by fluid dynamics and transport. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2013/10/131004090315.htm
Springer Science+Business Media. "Lung structure shaped by fluid dynamics and transport." ScienceDaily. www.sciencedaily.com/releases/2013/10/131004090315.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Fossils & Ruins News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Newsy (Jan. 30, 2015) — A long-necked dinosaur from the Jurassic Period was discovered in China. Researchers think it could answer mythology questions. Video provided by Newsy
Powered by NewsLook.com
Battle of Waterloo Artefacts Go on Display at Windsor Castle

Battle of Waterloo Artefacts Go on Display at Windsor Castle

AFP (Jan. 29, 2015) — Artefacts from the Battle of Waterloo go on display at Windsor Castle to mark the 200th anniversary of the momentous battle. The exhibition includes contemporary prints, drawings and personal belongings of French Emperor Napoleon. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Mideast Skull Find Sheds Light on Human Ancestors' Trek

Mideast Skull Find Sheds Light on Human Ancestors' Trek

AFP (Jan. 29, 2015) — A 55,000-year-old partial skull found in the Middle East gives clues to when our ancestors left their African homeland, and strengthens theories that they co-habited with Neanderthals. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Newsy (Jan. 28, 2015) — Wrongly categorized as lizard fossils, snake fossils now show the reptile could have developed earlier than we thought — 70 million years earlier. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins