Featured Research

from universities, journals, and other organizations

Lung structure shaped by fluid dynamics and transport

Date:
October 4, 2013
Source:
Springer Science+Business Media
Summary:
Physicists suggest how evolution has shaped our lungs through successive optimizations of physical parameters such as conservation of energy and speed of delivery. Our respiratory system consists of a bronchial tree designed to transport air through the lungs combined with an alveolar system designed to capture the oxygen. Both are subjected to different type of optimizations. Only tree-like structures, the paper shows, are able to efficiently feed organs above a small size, below which organs are solely fed by diffusion.

How fluid dynamics and transport shaped the structure of our lungs in the course of evolution.

Two French physicists, Bernard Sapoval and Marcel Filoche from École Polytechnique in Palaiseau, France, suggest in a study published in EPJ E how evolution has shaped our lungs through successive optimisations of physical parameters such as conservation of energy and speed of delivery.

Our respiratory system consists of a bronchial tree designed to transport air through the lungs combined with an alveolar system designed to capture the oxygen. Both are subjected to different type of optimisations. Only tree-like structures, the paper shows, are able to efficiently feed organs above a small size, below which organs are solely fed by diffusion. Specifically, the authors first show that energy losses of fluids during transport are minimised in a tree-like structure of fractal dimension 3. Second, they indicate that this optimised tree is also 'space-filling' to optimise proximity to the working alveolae. Third, they show that a system designed to reduce the time spent to transport fluids throughout an organ has the same fractal optimisation.

In an evolutionary perspective, the size of primitive multi-cellular species was necessarily limited by nutrients' diffusion speed. One hypothesis defended in this study is that larger primitive animals have thus been conditioned by a progressive Darwinian selection of tree-like 'space-filling' nutrient distribution systems. Then, their genetic material was ready to be shared to allow mammalian respiration. Successive inspirations and expirations cycles had to be optimised so that external air could reach the alveoli before expiration starts. This form of evolutionary tinkering, the authors believe, would have allowed the emergence of mammalian respiration-as opposed to fish-style breathing through gills.

Similarly, the paper shows that the structure of the alveolar system is indeed optimal to allow efficient transport of oxygen from the air to the blood. This new insight into the lung's evolutionary process stems from the physical principles underlying the architecture of living systems.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bernard Sapoval, Marcel Filoche. Optimisations and evolution of the mammalian respiratory system. The European Physical Journal E, 2013; 36 (9) DOI: 10.1140/epje/i2013-13105-1

Cite This Page:

Springer Science+Business Media. "Lung structure shaped by fluid dynamics and transport." ScienceDaily. ScienceDaily, 4 October 2013. <www.sciencedaily.com/releases/2013/10/131004090315.htm>.
Springer Science+Business Media. (2013, October 4). Lung structure shaped by fluid dynamics and transport. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/10/131004090315.htm
Springer Science+Business Media. "Lung structure shaped by fluid dynamics and transport." ScienceDaily. www.sciencedaily.com/releases/2013/10/131004090315.htm (accessed September 2, 2014).

Share This



More Fossils & Ruins News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Neanderthals Play Tic-Tac-Toe?

Did Neanderthals Play Tic-Tac-Toe?

Newsy (Sep. 2, 2014) — Artwork found in a Gibraltar cave that was possibly done by Neanderthals suggests they may have been smarter than we all thought. Video provided by Newsy
Powered by NewsLook.com
Millions Of Historical Public Domain Photos Added To Flickr

Millions Of Historical Public Domain Photos Added To Flickr

Newsy (Aug. 30, 2014) — Historian Kalev Leetaru uploaded a large collection of historical photos, images that were previously difficult to collect. Video provided by Newsy
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) — An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins