Featured Research

from universities, journals, and other organizations

Clues to foam formation could help find oil

Date:
October 8, 2013
Source:
Rice University
Summary:
Scientists have discovered two previously unknown ways bubbles form in foam as they investigated materials targeted for enhanced oil recovery.

In a bubble-forming mechanism discovered at Rice University, neighboring bubbles pinch a third into two before it enters a constriction like those found in oil-bearing reservoirs deep in the Earth. The research is part of Rice’s effort to understand the creation of foam for enhanced oil extraction and other purposes.
Credit: Biswal Lab/Rice University

Blowing bubbles in the backyard is one thing and quite another when searching for oil. That distinction is at the root of new research by Rice University scientists who describe in greater detail than ever precisely how those bubbles form, evolve and act.

A new study led by Rice chemical and biomolecular engineer Sibani Lisa Biswal and published in the journal Soft Matter describes two previously unknown ways that bubbles form in foam.

The work should be of interest to those who make and use foam for a variety of reasons, from shaving cream to insulation. But it may be of primary importance to companies trying to extract every possible drop of oil from a reservoir by using volumes of thick foam to displace it.

Biswal and her team used microfluidic devices and high-speed imaging to capture images of how bubbles transform as they pass through tight spaces like those found in permeable rock deep underground. They discovered mechanisms that should help engineers understand how foam can be manipulated for specific tasks.

"In the classic descriptions of bubble formation, there's what we call snap-off, lamella division and leave-behind," Biswal said. Snap-off bubbles are created when liquid accumulates by capillary action in a narrow section of a pore and forms a liquid slug separating two bubbles. A lamella division bubble happens when the lamella (a thin film of liquid) moves through a branch in the flow path and becomes two lamella. Leave-behind happens when a gas enters two adjoining, parallel pores and the liquid between the two pores thin down to a lamella.

In the newly observed bubble-making processes, which she calls "pinch-off" behaviors, the bubbles form before gas passes through the constriction, not after.

"No one has seen these mechanisms," she said. In one pinch-off, a bubble caught between a neighboring bubble and the wall would split as it entered the channel. In the second, she said, "We found neighboring bubbles that are basically karate-chopping a third one as it tries to go through."

The smaller the bubbles in the foam, the better it may serve enhanced oil recovery, said George Hirasaki, a Rice research professor of chemical and biomolecular engineering and co-author of the paper.

"We're trying to understand how foam behaves in porous media because it is a way of making gas act like a more viscous fluid," he said. "Normally, gas has very low viscosity and it tends to flow through rock and not displace oil and water. Once it finds a path, usually along the top of a reservoir, the rest of the gas tends to follow.

"If there were some way to make gas act more like a liquid, to make it more viscous, then it would contact much more of the reservoir and would push the fluids out," Hirasaki said.

Ideally, foam would pack the channels inside high-permeable regions and force pressure to flow through rocks with low permeability, flushing out the hard-to-get oil often trapped there.

The Biswal lab built devices that mimic what happens in porous rock, squeezing mixtures of gas and surfactant through 20 micrometer-wide channels. They filmed what happened under a range of pressures at either end of the channel at 10,000 frames per second.

"Normally we work in rock samples or sand packs and we measure the pressure drop," Hirasaki said. "It's hard to see what's happening at the pore scale. But with the micromodel, we can see it with our own eyes -- or with the camera's eye."

"We want to offer the oil industry more mobility control," Biswal said. "What we mean by that is the ability to drive fluids through areas that vary in their permeability. We want fluids to move through the entire path, not just the path of least resistance."

Lead authors are Rice alumna Rachel Liontas, currently a graduate student at Caltech, and former graduate student Kun Ma, currently a reservoir engineer at Total E&P USA. Biswal is an associate professor of chemical and biomolecular engineering.

The Abu Dhabi National Oil Company, the Abu Dhabi Oil R&D Sub-Committee, the Abu Dhabi Company for Onshore Oil Operations, the Zakum Development Co., the Abu Dhabi Marine Operating Company), the Petroleum Institute of the United Arab Emirates and the U.S. Department of Energy funded the research.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rachel Liontas, Kun Ma, George J. Hirasaki, Sibani Lisa Biswal. Neighbor-induced bubble pinch-off: novel mechanisms of in situ foam generation in microfluidic channels. Soft Matter, 2013; DOI: 10.1039/C3SM51605A

Cite This Page:

Rice University. "Clues to foam formation could help find oil." ScienceDaily. ScienceDaily, 8 October 2013. <www.sciencedaily.com/releases/2013/10/131008132902.htm>.
Rice University. (2013, October 8). Clues to foam formation could help find oil. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/10/131008132902.htm
Rice University. "Clues to foam formation could help find oil." ScienceDaily. www.sciencedaily.com/releases/2013/10/131008132902.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins