Featured Research

from universities, journals, and other organizations

Rust can power up artificial photosynthesis: Chemists produce power boost critical to novel energy harvesting applications

Date:
October 11, 2013
Source:
Boston College
Summary:
Scientists trying to develop artificial photosynthesis for unique applications, like harvesting solar energy, have focused on narrowing the photovoltage gap between the two principle reactions of oxidation and reduction. Chemists report nearly bridging that gap using inexpensive materials in a process that could lead to new energy applications.

Taking Mother Nature's lead, researchers have sought new methods and materials capable of mimicking photosynthesis. Researchers at Boston College report that modifying the surface of hematite with a nickel iron oxide coating produces an increase in cathode photovoltage of nearly four-tenths of a volt. That's nearly enough energy to put an economical method of artificial photosynthesis within reach.
Credit: Angewandte Chemie

Chemists at Boston College have achieved a series of breakthroughs in their efforts to develop an economical means of harnessing artificial photosynthesis by narrowing the voltage gap between the two crucial processes of oxidation and reduction, according to their latest research, published this week in the journal Angewandte Chemie.

The team reports it has come within two-tenths of the photovoltage required to mimic oxidation and reduction respectively using unique photoanodes and photocathodes the team developed using novel nanowire components and coatings. Narrowing the gap using economical chemical components, the group moves researchers closer to using the human-made reaction for unique applications such as solar energy harvesting and storage.

"Many researchers have been trying to harvest solar energy and directly store it in chemical bonds," said lead author Dunwei Wang, an associate professor of chemistry at Boston College. "Solar panels can harvest energy, but economical storage has remained elusive. We are trying to borrow a page from Mother Nature whereby photosynthesis produces energy from the sun and stores it."

But copying Mother Nature is a tall order and this particular quest "requires materials that can absorb sunlight broadly, transfer the energy to excited charges at high efficiencies and catalyze specific reduction and oxidation reactions," the team writes in the article "Hematite-Based Water Splitting with Low Turn-on Voltage."

Natural photosynthesis consists of two important processes. Oxidation produces oxygen gas. Reduction produces organic molecules. Wang said artificial photosynthesis, also known as water splitting, tries to copy these two reactions using a photoanode to oxidize water and a photocathode to either reduce water for hydrogen production or to reduce carbon dioxide for organic molecules.

But in an artificial environment, a gap has persisted in the voltage required on either side of the reaction in order achieve these results, Wang said. In essence, oxidation and reduction require 1.2 to 1.3 volts combined to achieve the charge required to power artificial photosynthesis.

Previously, only rare materials allowed researchers bridge the gap, but those efforts are prohibitively expensive for widespread application. Wang and his lab have spent the past two years searching for inexpensive alternatives to bridge the voltage gap.

Earlier this year, the lab reported it had developed a new cathode preparation technique to improve hydrogen production. The findings removed most of the barriers to constructing an inexpensive, yet highly efficient photocathode, Wang said.

The team's latest research produced advances in photoanode development, where their engineered nanowire structures enabled the team to achieve a photovoltage of .6 volts using an iron oxide material. The voltage represents a 50 percent increase above the best prior results, which were reported last year. The results put Wang and his team within two-tenths of a volt of the necessary photovoltage.

The team achieved the gains by coating hematite, an iron oxide similar to rust, with nickel iron oxide.

Already, the team has yielded more than 1 volt of power when combined with the photocathode they developed earlier this year, said Wang, whose team included post-doctoral researcher Xiaogang Yang, graduate students Chun Du, Matthew T. Mayer and Jin Xie, undergraduates Henry Hoyt and Gregory Bischoping and Gregory McMahon, a nanolithography and electron microscopy manager at BC's Nanofabrication Clean Room.

"Our system, made of oxygen, silicon and iron -- three of the four most abundant elements on earth -- can now provide more than 1 volt of power together," said Wang. "Now we are just two-tenths of a volt short on the photoanode. That's a significant narrowing of the gap."

He says closing the gap completely is entirely within reach, particularly since other researchers have used different systems to do so. He said his lab might partner with other researchers in an effort to close the gap.

"With our innovations on the photocathode alone, this two-tenths of a volt is within reach," said Wang. "The real exciting part is that we were able to achieve six tenths of a volt using rust. That has never been done before."


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chun Du, Xiaogang Yang, Matthew T. Mayer, Henry Hoyt, Jin Xie, Gregory McMahon, Gregory Bischoping, Dunwei Wang. Hematite-Based Water Splitting with Low Turn-On Voltages. Angewandte Chemie, 2013 (in press)

Cite This Page:

Boston College. "Rust can power up artificial photosynthesis: Chemists produce power boost critical to novel energy harvesting applications." ScienceDaily. ScienceDaily, 11 October 2013. <www.sciencedaily.com/releases/2013/10/131011093958.htm>.
Boston College. (2013, October 11). Rust can power up artificial photosynthesis: Chemists produce power boost critical to novel energy harvesting applications. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/10/131011093958.htm
Boston College. "Rust can power up artificial photosynthesis: Chemists produce power boost critical to novel energy harvesting applications." ScienceDaily. www.sciencedaily.com/releases/2013/10/131011093958.htm (accessed September 17, 2014).

Share This



More Earth & Climate News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins