Featured Research

from universities, journals, and other organizations

Researchers sequence non-infiltrating bladder cancer exome

Date:
October 13, 2013
Source:
Centro Nacional de Investigaciones Oncologicas (CNIO)
Summary:
Researchers have carried out the first exome sequencing for non-infiltrating bladder cancer, the most frequent type of bladder cancer and the one with the highest risk of recurrence. The results reveal new genetic pathways involved in the disease, such as cellular division and DNA repair, as well as new genes—not previously described—that might be crucial for understanding its origin and evolution.

This image shows a bladder tumor sample containing mutations in the STAG2 gene.
Credit: CNIO

Bladder cancer represents a serious public health problem in many countries, especially in Spain, where 11,200 new cases are recorded every year, one of the highest rates in the world. The majority of these tumours have a good prognosis -- 70-80% five-year survival after diagnosis -- and they do not infiltrate the bladder muscle at the time of diagnosis -- in around 80% of cases.

Related Articles


Despite this, many of the tumours recur, requiring periodic cytoscopic tumour surveillance. This type of follow-up affects patients' quality of life, at the same time as incurring significant healthcare costs.

Researchers at the Spanish National Cancer Research Centre (CNIO), coordinated by Francisco X. Real, head of the Epithelial Carcinogenesis Group and Nuria Malats, head of the Genetic & Molecular Epidemiology Group, have carried out the first exome sequencing for non-infiltrating bladder cancer, the most frequent type of bladder cancer and the one with the highest risk of recurrence (the exome is the part of the genome that contains protein synthesis information).

The results reveal new genetic pathways involved in the disease, such as cellular division and DNA repair, as well as new genes -- not previously described -- that might be crucial for understanding its origin and evolution.

"We know very little about the biology of bladder cancer, which would be useful for classifying patients, predicting relapses and even preventing the illness," says Cristina Balbás, a predoctoral researcher in Real's laboratory who is the lead author of the study.

The work consisted of analysing the exome from 17 patients diagnosed with bladder cancer and subsequently validating the data via the study of a specific group of genes in 60 additional patients.

"We found up to 9 altered genes that hadn't been described before in this type of tumour, and of these we found that STAG2 was inactive in almost 40% of the least aggressive tumours," says Real.

The researcher adds that: "Some of these genes are involved in previously undescribed genetic pathways in bladder cancer, such as cell division and DNA repair; also, we confirmed and extended other genetic pathways that had previously been described in this cancer type, such as chromatin remodelling."

An Unknown Agent in Bladder Cancer

The STAG2 gene has been associated with cancer just over 2 years ago, although "little is known about it, and nothing about its relationship to bladder cancer," says Balbás. Previous studies suggest it participates in chromosome separation during cell division (chromosomes contain the genetic material), which is where it might be related to cancer, although it has also been associated with maintenance of DNA´s 3D structure or in gene regulation.

Contrary to what might be expected, the article reveals that tumours with an alteration in this gene frequently lack changes in the number of chromosomes, which indicates, according to Real, that "this gene participates in bladder cancer via different mechanisms than chromosome separation."

The authors have also found, by analysising tumour tissue from more than 670 patients, that alterations in STAG2 are associated, above all, with tumours from patients with a better prognosis. How and why these phenomena work still needs to be discovered but the researchers predict that "mutations in STAG2 and other additional genes that we showed to be altered could provide new therapeutic opportunities in some patient sub-groups."


Story Source:

The above story is based on materials provided by Centro Nacional de Investigaciones Oncologicas (CNIO). Note: Materials may be edited for content and length.


Journal Reference:

  1. Cristina Balbás-Martínez, Ana Sagrera, Enrique Carrillo-de-Santa-Pau, Julie Earl, Mirari Márquez, Miguel Vazquez, Eleonora Lapi, Francesc Castro-Giner, Sergi Beltran, Mònica Bayés, Alfredo Carrato, Juan C Cigudosa, Orlando Domínguez, Marta Gut, Jesús Herranz, Núria Juanpere, Manolis Kogevinas, Xavier Langa, Elena López-Knowles, José A Lorente, Josep Lloreta, David G Pisano, Laia Richart, Daniel Rico, Rocío N Salgado, Adonina Tardón, Stephen Chanock, Simon Heath, Alfonso Valencia, Ana Losada, Ivo Gut, Núria Malats, Francisco X Real. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nature Genetics, 2013; DOI: 10.1038/ng.2799

Cite This Page:

Centro Nacional de Investigaciones Oncologicas (CNIO). "Researchers sequence non-infiltrating bladder cancer exome." ScienceDaily. ScienceDaily, 13 October 2013. <www.sciencedaily.com/releases/2013/10/131013163625.htm>.
Centro Nacional de Investigaciones Oncologicas (CNIO). (2013, October 13). Researchers sequence non-infiltrating bladder cancer exome. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/10/131013163625.htm
Centro Nacional de Investigaciones Oncologicas (CNIO). "Researchers sequence non-infiltrating bladder cancer exome." ScienceDaily. www.sciencedaily.com/releases/2013/10/131013163625.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) — Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) — Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins