Featured Research

from universities, journals, and other organizations

Scientists bend world's thinnest glass and see atoms dance

Date:
October 15, 2013
Source:
University of Ulm
Summary:
Watch what happens when the world’s thinnest sheet of glass breaks. Well, not exactly breaks, but close to it. Scientists have used an electron microscope to bend, deform and melt one molecule-thick glass. These are all things that happen just before glass shatters, and for the first time, the researchers have directly imaged such deformations and the resulting “dance” of rearranging atoms in silica glass, which forms the basis for everyday windowpanes.

Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B-E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 cluster into a 6-6-6-6 cluster. (G) Larger view of the region from part A, and (H) corresponding first-to-last frame displacement map. (H) The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars 1 nm.
Credit: Image courtesy of University of Ulm

Watch what happens when the world's thinnest sheet of glass discovered by researchers from Cornell University and the University of Ulm featured in the Guinness Book of World Records, breaks. Well, not exactly breaks, but close to it.

Related Articles


A research team led by David A. Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science and Ute Kaiser from the University of Ulm, who both led the previous study on atomically thin glass, has used an electron microscope to bend, deform and melt the one molecule-thick glass. These are all things that happen just before glass shatters, and for the first time, the researchers have directly imaged such deformations and the resulting "dance" of rearranging atoms in silica glass, which forms the basis for everyday windowpanes. This newest work is published Oct. 11 in the journal Science.

Glass, what's known as an amorphous solid because its atoms are rigid like a crystal but disorderly like a liquid, is notoriously hard to study, said Pinshane Huang, a graduate student working with Muller and the paper's first author.

"Now, instead of just looking at its structure, we are looking at its dynamics and how it bends and breaks," Huang said. "This thinnest-ever glass gives us a new way of looking at glasses at the single-atom level, and how they break atom by atom." Added Muller: "No one has ever before been able to see the rearrangements of atoms in a glass when you push on it."

Sophisticated theories describe how these atoms behave when bent or broken, but only on the computer, said Jim Sethna, professor of physics and paper co-author. "Lots of people have made computer simulations, but this is the experimental realization of what the glass community has been looking for a long, long time."

With collaborators at both Cornell and Germany's University of Ulm, the researchers imaged the thin glass with two types of transmission electron microscopes. The electron beam heated up the glass, causing visible structural deformation at the interfaces between liquid and solid phases. Muller described the electrons as "tickling" the glass in order to deform it and simultaneously image what was happening.

To do their study, the researchers borrowed longstanding theories and predictions from scientists who study colloids -- suspensions of particles in liquid that are representative of atoms but can be observed directly because they are larger.

"A lot of what we did was to use their methods and tracking codes and ideas, and now that we can actually see atoms in a glass, we tried it with real atoms," Huang said.

The work was supported by the National Science Foundation, Cornell Center for Materials Research and Air Force Office of Science Research.


Story Source:

The above story is based on materials provided by University of Ulm. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Y. Huang, S. Kurasch, J. S. Alden, A. Shekhawat, A. A. Alemi, P. L. McEuen, J. P. Sethna, U. Kaiser, D. A. Muller. Imaging Atomic Rearrangements in Two-Dimensional Silica Glass: Watching Silica's Dance. Science, 2013; 342 (6155): 224 DOI: 10.1126/science.1242248

Cite This Page:

University of Ulm. "Scientists bend world's thinnest glass and see atoms dance." ScienceDaily. ScienceDaily, 15 October 2013. <www.sciencedaily.com/releases/2013/10/131015094028.htm>.
University of Ulm. (2013, October 15). Scientists bend world's thinnest glass and see atoms dance. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/10/131015094028.htm
University of Ulm. "Scientists bend world's thinnest glass and see atoms dance." ScienceDaily. www.sciencedaily.com/releases/2013/10/131015094028.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Bending World's Thinnest Glass Shows Atoms' Dance

Oct. 15, 2013 Watch what happens when you bend and break the world's thinnest glass. This glass was recently featured in the Guinness Book of World Records and is made of the same compounds as everyday ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins