Featured Research

from universities, journals, and other organizations

New multiple action intestinal hormone corrects diabetes

Date:
October 30, 2013
Source:
Helmholtz Zentrum München - German Research Center for Environmental Health
Summary:
Scientists have developed a new therapeutic approach for treatment of Type 2 diabetes. A novel single molecule hormone, which acts equally on the receptors of the insulin-stimulating hormones GLP-1 and GIP, was observed to reduce weight and improve blood sugar.

The newly discovered GLP-1/GIP co-agonists lead to improved blood sugar levels and to a significant weight loss and lower blood fat. Importantly, the researchers observed that the new substance also improved metabolism in humans, in addition to beneficial effects they discovered in several animal models.
Credit: © Alexander Raths / Fotolia

Scientists from the Helmholtz Zentrum München (HMGU) and the Technische Universität München (TUM), together with scientists in the USA, have developed a new therapeutic approach for treatment of type 2 diabetes. A novel single molecule hormone, which acts equally on the receptors of the insulin-stimulating hormones GLP-1 and GIP, was observed to reduce weight and improve blood sugar. The results have now been published in the medical journal 'Science Translational Medicine', and include data from successful clinical studies in partnership with the pharmaceutical company Roche.

Related Articles


GLP-1 (glucagon-like peptide 1) and GIP (gastric inhibitory peptide) are hormones that are formed by the digestive tract and that control food intake and numerous metabolic processes. When glucose (sugar) is ingested, these hormones primarily lead to increased insulin release and subsequent reduction in blood sugar, but they also affect appetite regulation and fat burning.

Some of the actions, which are combined in one molecule for the first time, are already in use for the treatment of type 2 diabetes. GLP-1 analogues, as well as DPP4 (dipeptidyl peptidase 4) inhibitors, which are thought to enhance GLP-1 action, are used to reduce blood sugar. A HMGU and TUM team led by Dr. Brian Finan and Prof. Dr. Matthias Tschöp at the Helmholtz Diabetes Center, working with Richard DiMarchi from Indiana University and colleagues from the University of Cincinnati, have now succeeded in developing a molecular structure that combines the effects of the two hormones. These novel molecules simultaneously stimulate two receptors (GLP-1 and GIP) and consequently maximize metabolic effects compared to each of the individual molecules, or currently available medicines that are based on individual intestinal hormones.

The newly discovered GLP-1/GIP co-agonists lead to improved blood sugar levels and to a significant weight loss and lower blood fat. Importantly, the researchers observed that the new substance also improved metabolism in humans, in addition to beneficial effects they discovered in several animal models. At the same time, there are indications that possible adverse effects, the most frequent of which are gastrointestinal complaints, are less common and less pronounced with this approach than with the individual hormones.

"Our results give us additional confidence that our combinatorial approach of modulating brain regulatory centers via natural gut hormone signals has superior potential for a transformative diabetes treatment," explains Prof. Tschöp. He adds a note of caution however: "Still, this approach has to go through several more years of intense research, clinical testing, and safety evaluations, before these substances may become available for patients." Dr. Finan, the first author of the study, points out that there may be unprecedented potential: "We are quite excited about this new multi-functional agent approach and believe it could become an integral part of a next generation of personalized therapies for type 2 diabetes, as the ratio of the GLP-1 and GIP signal strengths could be adjusted depending on the individual needs of patients." The studies which were just published in Science Translational Medicine are perfectly aligned with the research objective of at the Helmholtz Zentrum München, partner of the German Center for Diabetes Research (DZD), which is to establish new approaches to the diagnosis, therapy and prevention of civilization's major widespread diseases and to further develop these approaches as quickly as possible in the context of translational research in order to provide specific benefits for society.


Story Source:

The above story is based on materials provided by Helmholtz Zentrum München - German Research Center for Environmental Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Finan, T. Ma, N. Ottaway, T. D. Muller, K. M. Habegger, K. M. Heppner, H. Kirchner, J. Holland, J. Hembree, C. Raver, S. H. Lockie, D. L. Smiley, V. Gelfanov, B. Yang, S. Hofmann, D. Bruemmer, D. J. Drucker, P. T. Pfluger, D. Perez-Tilve, J. Gidda, L. Vignati, L. Zhang, J. B. Hauptman, M. Lau, M. Brecheisen, S. Uhles, W. Riboulet, E. Hainaut, E. Sebokova, K. Conde-Knape, A. Konkar, R. D. DiMarchi, M. H. Tschop. Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Science Translational Medicine, 2013; 5 (209): 209ra151 DOI: 10.1126/scitranslmed.3007218

Cite This Page:

Helmholtz Zentrum München - German Research Center for Environmental Health. "New multiple action intestinal hormone corrects diabetes." ScienceDaily. ScienceDaily, 30 October 2013. <www.sciencedaily.com/releases/2013/10/131030142919.htm>.
Helmholtz Zentrum München - German Research Center for Environmental Health. (2013, October 30). New multiple action intestinal hormone corrects diabetes. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/10/131030142919.htm
Helmholtz Zentrum München - German Research Center for Environmental Health. "New multiple action intestinal hormone corrects diabetes." ScienceDaily. www.sciencedaily.com/releases/2013/10/131030142919.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins