Featured Research

from universities, journals, and other organizations

Research finding may help accelerate diabetic wound healing

Date:
October 30, 2013
Source:
University of Notre Dame
Summary:
Researchers have, for the first time, identified the enzymes that are detrimental to diabetic wound healing and those that are beneficial to repair the wound.

University of Notre Dame researchers have, for the first time, identified the enzymes that are detrimental to diabetic wound healing and those that are beneficial to repair the wound.

There are currently no therapeutics for diabetic wound healing. The current standard of care is palliative to keep the wound clean and free of infection. In the United States, 66,000 diabetic individuals each year undergo lower-limb amputations due to wounds that failed to heal.

A team of researchers from Notre Dame's Department of Chemistry and Biochemistry, led by Mark Suckow, Shahriar Mobashery and Mayland Chang, searched for metalloproteinases (MMPs) in the wounds of healthy and diabetic mice.

Gelatinases, a class of enzymes, have been implicated in a host of human diseases from cancer to cardiovascular conditions. Chang has been researching activation of MMPs, particularly gelatinase B or MMP-9.

The MMPs remodel the extracellular matrix in tissue during wound healing.

"We show that MMP-9 is detrimental to wound healing, while MMP-8 is beneficial," Chang said. "Our studies provide a strategy for diabetic wound healing by using selective MMP-9 inhibitors."

The team treated diabetic mice with an inhibitor of MMP-9 and discovered that wounds were healed 92 percent after 14 days, as compared to 74 percent healing in untreated mice.

The identification of the enzyme that interferes with diabetic wound healing and that which repairs the wound opens the door to new, novel treatment strategies.

"Currently, advanced wound dressings containing collagen are used for diabetic wound healing," Chang said. "The collagen provides a substrate so that the unregulated MMP-9 chews on the collagen in the dressing, rather than on the wound. It would be better to treat the diabetic wounds with a selective MMP-9 inhibitor to inhibit the culprit enzyme that is impeding wound healing while leaving the beneficial MMP-8 uninhibited to help repair the wound."

The study appeared in the American Chemical Society's journal ACS Chemical Biology.


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Journal Reference:

  1. Major Gooyit, Zhihong Peng, William R. Wolter, Hualiang Pi, Derong Ding, Dusan Hesek, Mijoon Lee, Bill Boggess, Matthew M. Champion, Mark A. Suckow, Shahriar Mobashery, Mayland Chang. A Chemical Biological Strategy to Facilitate Diabetic Wound Healing. ACS Chemical Biology, 2013; 130926121023004 DOI: 10.1021/cb4005468

Cite This Page:

University of Notre Dame. "Research finding may help accelerate diabetic wound healing." ScienceDaily. ScienceDaily, 30 October 2013. <www.sciencedaily.com/releases/2013/10/131030152920.htm>.
University of Notre Dame. (2013, October 30). Research finding may help accelerate diabetic wound healing. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/10/131030152920.htm
University of Notre Dame. "Research finding may help accelerate diabetic wound healing." ScienceDaily. www.sciencedaily.com/releases/2013/10/131030152920.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com
Hundreds in Virginia Turn out for a Free Clinic to Manage Health

Hundreds in Virginia Turn out for a Free Clinic to Manage Health

AFP (July 24, 2014) America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th - prompting hundreds in Virginia to turn out for a free clinic run by “Remote Area Medical”. Duration 02:40 Video provided by AFP
Powered by NewsLook.com
Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins