Featured Research

from universities, journals, and other organizations

Research finding may help accelerate diabetic wound healing

Date:
October 30, 2013
Source:
University of Notre Dame
Summary:
Researchers have, for the first time, identified the enzymes that are detrimental to diabetic wound healing and those that are beneficial to repair the wound.

University of Notre Dame researchers have, for the first time, identified the enzymes that are detrimental to diabetic wound healing and those that are beneficial to repair the wound.

Related Articles


There are currently no therapeutics for diabetic wound healing. The current standard of care is palliative to keep the wound clean and free of infection. In the United States, 66,000 diabetic individuals each year undergo lower-limb amputations due to wounds that failed to heal.

A team of researchers from Notre Dame's Department of Chemistry and Biochemistry, led by Mark Suckow, Shahriar Mobashery and Mayland Chang, searched for metalloproteinases (MMPs) in the wounds of healthy and diabetic mice.

Gelatinases, a class of enzymes, have been implicated in a host of human diseases from cancer to cardiovascular conditions. Chang has been researching activation of MMPs, particularly gelatinase B or MMP-9.

The MMPs remodel the extracellular matrix in tissue during wound healing.

"We show that MMP-9 is detrimental to wound healing, while MMP-8 is beneficial," Chang said. "Our studies provide a strategy for diabetic wound healing by using selective MMP-9 inhibitors."

The team treated diabetic mice with an inhibitor of MMP-9 and discovered that wounds were healed 92 percent after 14 days, as compared to 74 percent healing in untreated mice.

The identification of the enzyme that interferes with diabetic wound healing and that which repairs the wound opens the door to new, novel treatment strategies.

"Currently, advanced wound dressings containing collagen are used for diabetic wound healing," Chang said. "The collagen provides a substrate so that the unregulated MMP-9 chews on the collagen in the dressing, rather than on the wound. It would be better to treat the diabetic wounds with a selective MMP-9 inhibitor to inhibit the culprit enzyme that is impeding wound healing while leaving the beneficial MMP-8 uninhibited to help repair the wound."

The study appeared in the American Chemical Society's journal ACS Chemical Biology.


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Journal Reference:

  1. Major Gooyit, Zhihong Peng, William R. Wolter, Hualiang Pi, Derong Ding, Dusan Hesek, Mijoon Lee, Bill Boggess, Matthew M. Champion, Mark A. Suckow, Shahriar Mobashery, Mayland Chang. A Chemical Biological Strategy to Facilitate Diabetic Wound Healing. ACS Chemical Biology, 2013; 130926121023004 DOI: 10.1021/cb4005468

Cite This Page:

University of Notre Dame. "Research finding may help accelerate diabetic wound healing." ScienceDaily. ScienceDaily, 30 October 2013. <www.sciencedaily.com/releases/2013/10/131030152920.htm>.
University of Notre Dame. (2013, October 30). Research finding may help accelerate diabetic wound healing. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/10/131030152920.htm
University of Notre Dame. "Research finding may help accelerate diabetic wound healing." ScienceDaily. www.sciencedaily.com/releases/2013/10/131030152920.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins