Featured Research

from universities, journals, and other organizations

New experiments reveal the types of bacteria involved in human decomposition

Date:
October 30, 2013
Source:
Public Library of Science
Summary:
The type of bacteria involved in human decomposition can change over time, according to new research.

The type of bacteria involved in human decomposition can change over time, according to new research published October 30th in the open-access journal PLOS ONE, by Aaron Lynne and colleagues at Sam Houston State University and Baylor College of Medicine.

A corpse is far from dead when viewed as an ecosystem for tiny bugs and microorganisms. Bacteria can take some credit for driving the natural process of human decomposition, but we know little about the diversity of bacterial species involved. Previous studies have been unfortunately limited to the traditional approach of culturing bacteria, whereas the vast majority of bacteria residing in the human body cannot actually be cultured experimentally.

To help address this problem, the authors studied the decomposition of two human cadavers under natural conditions. They assessed bacterial biodiversity using a gene sequencing method of analyzing bacterial DNA, rather than relying on traditional culture methods. This sequencing method allowed them to measure bacterial genes present in any given region of the cadaver, giving them a high-throughput way of mapping out an entire microbial community at two different time points.

They found that these bacterial communities were different between the two bodies and between regions on the same body, and these communities changed over the time-course of decomposition. The authors suggest that bacterial communities may be following specific, changing patterns as a corpse moves through its natural stages of decomposition. This gene sequencing approach may be a valuable tool for further dissecting the role of bacteria in human decomposition. Lynne expands, "This study is the first to catalogue bacteria present internally at the onset and end of the bloat stage of human decomposition. Ultimately, we hope to come up with a cumulative systems approach to look at decomposition in a way that might complement existing forensic models at determining the post-mortem interval (time since death)."


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Embriette R. Hyde, Daniel P. Haarmann, Aaron M. Lynne, Sibyl R. Bucheli, Joseph F. Petrosino. The Living Dead: Bacterial Community Structure of a Cadaver at the Onset and End of the Bloat Stage of Decomposition. PLoS ONE, 2013; 8 (10): e77733 DOI: 10.1371/journal.pone.0077733

Cite This Page:

Public Library of Science. "New experiments reveal the types of bacteria involved in human decomposition." ScienceDaily. ScienceDaily, 30 October 2013. <www.sciencedaily.com/releases/2013/10/131030185930.htm>.
Public Library of Science. (2013, October 30). New experiments reveal the types of bacteria involved in human decomposition. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/10/131030185930.htm
Public Library of Science. "New experiments reveal the types of bacteria involved in human decomposition." ScienceDaily. www.sciencedaily.com/releases/2013/10/131030185930.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins