Featured Research

from universities, journals, and other organizations

Molecule that orients neurons for high definition sensing identified

Date:
October 31, 2013
Source:
RIKEN
Summary:
Many animals have highly developed senses, such as vision in carnivores, touch in mice, and hearing in bats. New research has uncovered a brain molecule that can explain the existence of such finely-tuned sensory capabilities, revealing how brain cells responsible for specific senses are positioned to receive incoming sensory information.

A normally asymmetric dendrite field of a mouse neuron with BTBD3 (top panels) becomes symmetric when the BTBD3 gene is removed (lower panels).
Credit: RIKEN

Many animals have highly developed senses, such as vision in carnivores, touch in mice, and hearing in bats. New research from the RIKEN Brain Science Institute has uncovered a brain molecule that can explain the existence of such finely-tuned sensory capabilities, revealing how brain cells responsible for specific senses are positioned to receive incoming sensory information.

The study, led by Dr. Tomomi Shimogori and published in the journal Science, sought to uncover the molecule that enables high acuity sensing by examining brain regions that receive information from the senses. They found that areas responsible for touch in mice and vision in ferrets contain a protein called BTBD3 that optimizes neuronal shape to receive sensory input more efficiently.

Neurons have a highly specialized shape, sending signals through one long projection called an axon, while receiving signals from many branch-like projections called dendrites. The final shape and connections to other neurons are typically completed after birth. Some neurons have dendrites distributed equally all around the cell body, like a starfish, while in others they extend only from one side, like a squid, steering towards axons that are actively bringing in information from the peripheral nerves. It was previously unknown what enables neurons to have highly oriented dendrites.

"We were fascinated by the dendrite patterning changes that occurred during the early postnatal stage that is controlled by neuronal input," says Dr. Shimogori. "We found a fundamental process that is important to remove unnecessary dendrites to prevent mis-wiring and to make efficient neuronal circuits."

The researchers searched for genes that are active exclusively in the mouse somatosensory cortex, the brain region responsible for their sense of touch, and found that the gene coding for the protein BTBD3 was active in the neurons of the barrel cortex, which receives input from their whiskers, the highly sensitive tactile sensors in mice, and that these neurons had unidirectional dendrites.

Using gene manipulations in embryonic mouse brain the authors found that eliminating BTBD3 made dendrites uniformly distribute around neurons in the mouse barrel cortex. In contrast, artificially introducing BTBD3 in the visual cortex of mice where BTBD3 is not normally found, reoriented the normally symmetrically positioned dendrites to one side. The same mechanism shaped neurons in the visual cortex of ferrets, which unlike the mouse contains BTBD3.

"High acuity sensory function may have been enabled by the evolution of BTBD3 and related proteins in brain development," adds Dr. Shimogori. "Finding BTBD3 selectively in the visual and auditory cortex of the common marmoset, a species that relies heavily on high acuity vocal and visual communication for survival, and in mouse, where it is expressed in high-acuity tactile and olfactory areas, but not in low acuity visual cortex, supports this idea." The authors plan to examine their theory by testing sensory function in mice without BTBD3 gene expression.


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. Asuka Matsui, May Tran, Aya C. Yoshida, Satomi S. Kikuchi, Mami U, Masaharu Ogawa, and Tomomi Shimogori. BTBD3 Controls Dendrite Orientation Toward Active Axons in Mammalian Neocortex. Science, 31 October 2013 DOI: 10.1126/science.1244505

Cite This Page:

RIKEN. "Molecule that orients neurons for high definition sensing identified." ScienceDaily. ScienceDaily, 31 October 2013. <www.sciencedaily.com/releases/2013/10/131031142742.htm>.
RIKEN. (2013, October 31). Molecule that orients neurons for high definition sensing identified. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2013/10/131031142742.htm
RIKEN. "Molecule that orients neurons for high definition sensing identified." ScienceDaily. www.sciencedaily.com/releases/2013/10/131031142742.htm (accessed August 2, 2014).

Share This




More Plants & Animals News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pyrenees Orphan Bear Cub Gets Brand New Home

Pyrenees Orphan Bear Cub Gets Brand New Home

AFP (Aug. 1, 2014) The discovery of a bear cub in the Pyrenees mountains made headlines in April 2014. Despire several attempts to find the animal's mother, the cub remained alone. Now, the Pyrenees Conservation Foundation has constructed an enclosure. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com
Rare Whale Fossil Pulled from Calif. Backyard

Rare Whale Fossil Pulled from Calif. Backyard

AP (Aug. 1, 2014) A rare whale fossil has been pulled from a Southern California backyard. The 16- to 17-million-year-old baleen whale fossil is one of about 20 baleen whale fossils known to exist. (Aug. 1) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins