Featured Research

from universities, journals, and other organizations

Scientists solve major piece in the origin of biological complexity

Date:
November 6, 2013
Source:
University of Minnesota
Summary:
Scientists have puzzled for centuries over how and why multicellular organisms evolved the almost universal trait of using single cells, such as eggs and sperm, to reproduce. Now researchers have set a big piece of that puzzle into place by applying experimental evolution to transform a single-celled algae into a multicellular one that reproduces by dispersing single cells.

"Understanding the origins of biological complexity is one of the biggest challenges in science," Travisano said. "In this experiment we've reordered one of the first steps in the origin of multicellularity, showing that two key evolutionary steps can occur far faster than previously anticipated."
Credit: abhijith3747 / Fotolia

Scientists have puzzled for centuries over how and why multicellular organisms evolved the almost universal trait of using single cells, such as eggs and sperm, to reproduce. Now researchers led by University of Minnesota College of Biological Sciences postdoctoral fellow William Ratcliff and associate professor Michael Travisano have set a big piece of that puzzle into place by applying experimental evolution to transform a single-celled algae into a multicellular one that reproduces by dispersing single cells.

"Until now, biologists have assumed that this single-cell bottleneck evolved well after multicellularity, as a mechanism to reduce conflicts of interest among the cells making up the organism," says Ratcliff. "Instead, we found that it arose at the same time as multicellularity. This has big implications for how multicellular complexity might arise in nature, because it shows that this key trait, which opens the door to evolving greater multicellular complexity, can evolve rapidly."

In an article published today in the journal Nature Communications, the researchers described how they produced the multi-celled strain by repeatedly selecting and culturing algae that settled quickly to the bottom of a liquid-filled test tube. After 73 rounds, they discovered that the algae in one of the tubes had gone multicellular.

Observing the new form, Ratcliff and Travisano discovered that it reproduced by actively breaking up, shedding motile single cells that go on to grow into new multicellular clusters. They developed a mathematical model that explained the reproductive benefit of this single-celled strategy over hypothetical alternatives in which the cluster would produce larger propagules. The model predicted that reproduction from single cells would be more successful in the long run. Even though single cells are less likely to survive than larger propagules, this disadvantage is more than made up for by their sheer number.

In collaboration with Matthew Herron and Frank Rosenzweig at the University of Montana, the researchers are now working to find the genetic basis for multicellularity and experimentally evolve even greater multicellular complexity.

"Understanding the origins of biological complexity is one of the biggest challenges in science," Travisano said. "In this experiment we've reordered one of the first steps in the origin of multicellularity, showing that two key evolutionary steps can occur far faster than previously anticipated. Looking forward, we hope to directly investigate the origins of developmental complexity, or how juveniles become adults, using the multicellular organisms that we evolved in the lab."

Several years ago, Travisano and Ratcliff made international news when they evolved multicellularity in yeast. This work takes those findings further by initiating multicellularity in an organism that has never had a multicellular ancestor and provides a new hypothesis for the evolutionary origins of the single-cell bottleneck in multicellular life cycles.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Journal Reference:

  1. William C. Ratcliff, Matthew D. Herron, Kathryn Howell, Jennifer T. Pentz, Frank Rosenzweig, Michael Travisano. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3742

Cite This Page:

University of Minnesota. "Scientists solve major piece in the origin of biological complexity." ScienceDaily. ScienceDaily, 6 November 2013. <www.sciencedaily.com/releases/2013/11/131106073859.htm>.
University of Minnesota. (2013, November 6). Scientists solve major piece in the origin of biological complexity. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/11/131106073859.htm
University of Minnesota. "Scientists solve major piece in the origin of biological complexity." ScienceDaily. www.sciencedaily.com/releases/2013/11/131106073859.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins