Featured Research

from universities, journals, and other organizations

Clotting protein hardens aging hearts

Date:
November 7, 2013
Source:
Rice University
Summary:
A researcher has found through studies of pigs' heart valves that age plays a critical role in the valves' progressive hardening, and the problem may be due to the infiltration of a protein known as von Willebrand factor. Tissues from pig valves are commonly used to make human heart-valve replacements.

A new study by Rice University researchers shows how the extracellular matrix in heart valve tissues changes with age, including the accumulation of von Willebrand factor (VWF), a blood-clotting protein. At top left is a sample of an elderly pig valve; at right, staining reveals the accumulation of VWF throughout the tissue. At bottom are porcine aortic valve interstitial cells not treated with endothelial cell VWF (left) and treated with endothelial cell VWF (right). The VWF appears to prompt formation of larger calcific nodules.
Credit: Integrative Matrix Mechanics Lab/Rice University

Heart valves calcify over time, and Rice University scientists are beginning to understand why.

The Rice lab of bioengineer Jane Grande-Allen found through studies of pigs' heart valves that age plays a critical role in the valves' progressive hardening, and the problem may be due to the infiltration of a protein known as von Willebrand factor (VWF). Tissues from pig valves are commonly used to make human heart-valve replacements.

VWF helps regulate blood clotting in both pigs and humans but, as the Rice team discovered, it finds its way over time into the collagen-rich interior of the valve tissues. Because clotting is not an issue in collagen, there is no apparent need for VWF to be present. The researchers went looking for a connection to the calcium nodules that form in the tissues and make the valves' leaflets less flexible, which decreases blood flow to the heart.

The new work, detailed in the American Heart Association journal Arteriosclerosis, Thrombosis and Vascular Biology, "opens up a huge line of investigation," Grande-Allen said.

The paper's lead author, Liezl Balaoing, a graduate student of Grande-Allen and Rice research scientist Joel Moake, studied valves from pigs of three ages: 6 weeks, 6 months and 2 years (as stand-ins for young, middle-aged and old human hearts). Through staining, Balaoing traced the migration of a number of clotting-related proteins common to pigs and humans from the surface endothelial cells to the inner interstitial cells.

The tests showed that as a valve ages, VWF and other proteins gather in the valve tissue's interior. They then tested how valve interstitial cells that produce calcium nodules in diseased valves respond to VWF. When interstitial cells were intentionally exposed to VWF, "there was a dramatic increase in the size of the nodules at every age," Balaoing said.

"Endothelial cells on the outside of the valve are making most of these (clotting-related) proteins," Grande-Allen said. "We found they don't just float away into the blood or stay on the valve surface. Some of them penetrate down into the tissue."

What remains to be seen is why. Heart valves are in motion from birth to death and are perhaps the most active connective tissue in the body. The researchers suspect the breakdown of collagen over time, as well as the constant stretching of the valve, opens gaps through which the proteins can travel.

"As you get older, collagen becomes less organized," Balaoing said. "Because the distinct arrangement of extracellular matrix disappears, I think proteins like VWF permeate inside the valve more than what you would see in young, healthy adults."

"We clearly know that our bodies and our whole physiology change with age," Grande-Allen said. "Biologically, characteristics like blood-clotting change with age too. The remarkable finding here is that aspects of changes in blood clotting are very strongly linked to the propensity to form calcified heart valves."

Grande-Allen said she saw signs of VWF invasion into the valves' interiors in earlier work, but it took a systematic effort by Balaoing to get to the truth. Now they hope to find the binding mechanism that keeps the proteins in place, as that discovery could lead to treatment. "We want to know if VWF and other clotting-related proteins are doing things to the valve interstitial cells and extracellular matrix that may contribute to calcification and other valve diseases," Grande-Allen said.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. R. Balaoing, A. D. Post, H. Liu, K. T. Minn, K. J. Grande-Allen. Age-Related Changes in Aortic Valve Hemostatic Protein Regulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013; DOI: 10.1161/%u200BATVBAHA.113.301936

Cite This Page:

Rice University. "Clotting protein hardens aging hearts." ScienceDaily. ScienceDaily, 7 November 2013. <www.sciencedaily.com/releases/2013/11/131107103815.htm>.
Rice University. (2013, November 7). Clotting protein hardens aging hearts. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/11/131107103815.htm
Rice University. "Clotting protein hardens aging hearts." ScienceDaily. www.sciencedaily.com/releases/2013/11/131107103815.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins