Featured Research

from universities, journals, and other organizations

Researchers regrow hair, cartilage, bone, soft tissues: Enhancing cell metabolism key to tissue repair

Date:
November 7, 2013
Source:
Boston Children's Hospital
Summary:
Young animals are known to repair their tissues effortlessly, but can this capacity be recaptured in adults? A new study suggests that it can. By reactivating a dormant gene called Lin28a, which is active in embryonic stem cells, researchers were able to regrow hair and repair cartilage, bone, skin and other soft tissues in a mouse model.

This image shows tissue regrowth in adult mice (reactivated Lin28a gene).
Credit: Cell, Shyh-Chang et al.

Young animals are known to repair their tissues effortlessly, but can this capacity be recaptured in adults? A new study from researchers at the Stem Cell Program at Boston Children's Hospital suggests that it can. By reactivating a dormant gene called Lin28a, which is active in embryonic stem cells, researchers were able to regrow hair and repair cartilage, bone, skin and other soft tissues in a mouse model.

Related Articles


The study also found that Lin28a promotes tissue repair in part by enhancing metabolism in mitochondria -- the energy-producing engines in cells -- suggesting that a mundane cellular "housekeeping" function could open new avenues for developing regenerative treatments. Findings were published online by the journal Cell on November 7.

"Efforts to improve wound healing and tissue repair have mostly failed, but altering metabolism provides a new strategy which we hope will prove successful," says the study's senior investigator George Q. Daley, MD, PhD, director of Boston Children's Stem Cell Transplantation Program and an investigator with the Howard Hughes Medical Institute.

"Most people would naturally think that growth factors are the major players in wound healing, but we found that the core metabolism of cells is rate-limiting in terms of tissue repair," adds PhD candidate Shyh-Chang Ng, co-first author on the paper with Hao Zhu, MD, both scientists in the Daley Lab. "The enhanced metabolic rate we saw when we reactivated Lin28a is typical of embryos during their rapid growth phase."

Lin28, first discovered in worms, functions in all complex organisms. It is abundant in embryonic stem cells, expressed strongly during early embryo formation and has been used to reprogram skin cells into stem cells. It acts by binding to RNA and regulating how genes are translated into proteins.

To better understand how Lin28a promotes tissue repair, the researchers systematically looked at what specific RNAs it binds to. They initially had their sights on a tiny RNA called Let-7, which is known to promote cell maturation and aging.

"We were confident that Let-7 would be the mechanism," says Shyh-Chang. "But there was something else involved."

Specifically, the researchers found that Lin28a also enhances the production of metabolic enzymes in mitochondria, the structures that produce energy for the cell. By revving up a cell's bioenergetics, they found, Lin28a helps generate the energy needed to stimulate and grow new tissues.

"We already know that accumulated defects in mitochondrial metabolism can lead to aging in many cells and tissues," says Shyh-Chang. "We are showing the converse -- that enhancement of mitochondrial metabolism can boost tissue repair and regeneration, recapturing the remarkable repair capacity of juvenile animals."

Further experiments showed that bypassing Lin28a and directly activating mitochondrial metabolism with a small-molecule compound also had the effect of enhancing wound healing. This suggests the possibility of inducing regeneration and promoting tissue repair with drugs.

"Since Lin28 itself is difficult to introduce into cells, the fact that we were able to activate mitochondrial metabolism pharmacologically gives us hope," Shyh-Chang says.

Lin28A didn't universally induce regeneration in all tissues. Heart tissue showed little effect, and while the researchers were able to enhance the regrowth of finger tips in newborn mice, they could not in adults.

"Lin28a could be a key factor in constituting a healing cocktail," says Shyh-Chang, "but there are other embryonic factors that remain to be found."


Story Source:

The above story is based on materials provided by Boston Children's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ng Shyh-Chang, Hao Zhu, T. Yvanka de Soysa, Gen Shinoda, Marc T. Seligson, Kaloyan M. Tsanov, Liem Nguyen, John M. Asara, Lewis C. Cantley, George Q. Daley. Lin28 Enhances Tissue Repair by Reprogramming Cellular Metabolism. Cell, 2013; 155 (4): 778 DOI: 10.1016/j.cell.2013.09.059

Cite This Page:

Boston Children's Hospital. "Researchers regrow hair, cartilage, bone, soft tissues: Enhancing cell metabolism key to tissue repair." ScienceDaily. ScienceDaily, 7 November 2013. <www.sciencedaily.com/releases/2013/11/131107123144.htm>.
Boston Children's Hospital. (2013, November 7). Researchers regrow hair, cartilage, bone, soft tissues: Enhancing cell metabolism key to tissue repair. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2013/11/131107123144.htm
Boston Children's Hospital. "Researchers regrow hair, cartilage, bone, soft tissues: Enhancing cell metabolism key to tissue repair." ScienceDaily. www.sciencedaily.com/releases/2013/11/131107123144.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Fountain-of-Youth Gene Repairs Tissue Damage in Adults

Nov. 7, 2013 — Young animals recover from tissue damage better than adults, and from Charles Darwin's time until now, scientists have puzzled over why this is the case. A study has revealed that an ... read more

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins