Featured Research

from universities, journals, and other organizations

Errant gliding proteins yield long-sought insight

Date:
November 11, 2013
Source:
Uppsala Universitet
Summary:
In order to react effectively to changes in the surroundings, bacteria must be able to quickly turn specific genes on or off. Although the overall mechanisms behind gene regulation have long been known, the fine details have eluded scientists for decades. Researchers can now provide a picture of how proteins regulate genetic expression at the atomic level.

In order to react effectively to changes in the surroundings, bacteria must be able to quickly turn specific genes on or off. Although the overall mechanisms behind gene regulation have long been known, the fine details have eluded scientists for decades. Researchers at Uppsala University can now provide a picture of how proteins regulate genetic expression at the atomic level.

Genes can be regarded as blueprints for all of the molecular machines —normally proteins—that perform the tasks an organism needs for survival. Under different living conditions, different types of proteins are needed to break down the available types of nutrients, for example.

Because the surroundings can change rapidly, it is also important for bacteria and other organisms to be able to quickly reconfigure their biochemical operations in order to adapt to the new environment. This is done through regulation of the activity of proteins that already exist in the cell, but also by the binding of special proteins—transcription factors—to specific sites on the DNA, turning certain genes on or off, which in turn regulates the cell's production of various proteins.

"The latter might seem impossible, as an arbitrary transcription factor normally exists in just a handful of copies inside a bacterial cell, and one of them has to find a specific binding site on the DNA spiral, which contains some five million base pairs, in order to turn a gene on or off," says Erik Marklund, one of the lead authors of the new study.

Roughly 40 years ago it was observed that these transcription factors find their binding sites on DNA much more quickly that free diffusion in three dimensions would allow. Theoretical and empirical studies have shown that it is likely that the transcription factors bind to a chromosome wherever they encounter one and then glide along the DNA in search of their binding sites. This enables a dramatically faster search process, but precisely how this happens has been obscure, until now.

Using large-scale computer simulations, researchers in Johan Elf's research team at Science for Life Laboratory at Uppsala University managed to study in detail how the transcription factor LacI moves along DNA in a spiral path. The study, to be published in a coming issue of Proceedings of the National Academy of Sciences (PNAS), compares the energy required to break off the interaction with DNA with the energy needed to glide along the DNA and how many times a protein binds back to the same DNA strand before it starts to look elsewhere. From this comparison, the scientists derived the average time the transcription factor is bound to the DNA and how much of the DNA it has time to search through before it lets go.

The insights from the study are of the greatest significance for our understanding of how the activity of genes is regulated. Not least they indicate how various DNA-binding proteins affect each other by acting as 'roadblocks' that impede the process. Ultimately this new knowledge also provides guidance regarding how the activity of genes can be manipulated.

Enhancing our understanding of how molecular interactions at the atomic level have consequences for the genetic activity of a cell brings new avenues for medical research. For example, improved simulation methods make it possible to test how new drugs can be expected to impact cells before they are even produced and tested in reality.


Story Source:

The above story is based on materials provided by Uppsala Universitet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Johan Elf,Erik Marklund et al. Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models. Proceedings of the National Academy of Sciences, November 2013

Cite This Page:

Uppsala Universitet. "Errant gliding proteins yield long-sought insight." ScienceDaily. ScienceDaily, 11 November 2013. <www.sciencedaily.com/releases/2013/11/131111161251.htm>.
Uppsala Universitet. (2013, November 11). Errant gliding proteins yield long-sought insight. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2013/11/131111161251.htm
Uppsala Universitet. "Errant gliding proteins yield long-sought insight." ScienceDaily. www.sciencedaily.com/releases/2013/11/131111161251.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins