Featured Research

from universities, journals, and other organizations

Crucial clumping of diabetes-causing proteins identified

Date:
November 11, 2013
Source:
University of Wisconsin-Madison
Summary:
Subtle differences in the shape of proteins protect some and endanger others. All mammals make this same protein called amylin, and it only differs a little bit from species to species. In the mammals that get type 2 diabetes, the amylin proteins aggregate in the pancreas into plaque that kills the cells around them, thereby ceasing all insulin production.

People get type 2 diabetes. So do cats. But rats don't, and neither do dogs.

Subtle differences in the shape of proteins protect some and endanger others.

"All mammals make this same protein called amylin, and it only differs a little bit from species to species," says Martin Zanni, a University of Wisconsin-Madison chemistry professor. "The mammals that get type 2 diabetes, their amylin proteins aggregate in the pancreas into plaque that kills the cells around them. As a result, you can't make insulin."

Without insulin, hungry cells can't tap sugar in the bloodstream for energy, and high blood sugar levels cause type 2 diabetes and its complications -- stroke, nerve damage and kidney disease among them.

Animal species that don't get type 2 diabetes find a way to keep plaque from forming in their pancreas and disrupting insulin production. Describing how their amylin proteins differ may provide a target for new treatments for diabetes and other plaque-involved disease such as Alzheimer's and Parkinson's.

A study published today by Zanni and collaborators in the Proceedings of the National Academy of Sciences paints that target on small clumps of mis-folding proteins in the middle of the plaque formation process.

"For about 30 years, we thought this problem was solved, because a lot of experiments pointed to the middle part of amylin molecules as the cause," Zanni says.

Named for its amino acid structure, the FGAIL regions of amylin proteins were believed to lock together -- "like boards in a wood floor," Zanni says -- into rigid sheets. The sheets, called beta-sheets, break apart, forming the dangerous plaque.

But experiments published in 2007 showed that the FGAIL section of amylin is floppy and loose, like a loop of rope. "This result made no sense compared to the 30 years of prior studies," Zanni says. "Why should the small differences in the amylin protein of various mammals play such a deciding role if those differences are located in a flexible, floppy and forgiving region of the protein?"

Zanni and collaborators showed that the floppy FGAIL region can contribute to the formation of plaque, but first, the amylin proteins must clump together in an arrangement in which the FGAIL region is indeed a rigid beta-sheet.

"That 30-year-old hypothesis is partly correct: the FGAIL region does indeed form the beta-sheets, but only for a little while until those sheets are broken to make the flexible loop," Zanni says.

The intermediate clumping step is where animal species resistant to type 2 diabetes are making their move.

"Our results indicate that the proteins in rats, dogs and other animals do not stop the plaques themselves, but instead target this upstream step," Zanni says, "preventing the intermediate from forming and thereby the plaques as well."

Using a technique called two-dimensional infrared spectroscopy developed in Zanni's lab, the new study -- which included collaborators at the University of California, Irvine, University of Chicago, Argonne National Lab and State University of New York at Stony Brook -- provides the first picture containing specific details of what the intermediate clumps look like.

"Good drugs work by fitting into nooks and crannies," says Zanni, whose work is funded by the National Institutes of Health. "Thus, it is much easier to design a drug when the shape of the toxic protein is known, which is what our data is beginning to provide."


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. E. Buchanan, E. B. Dunkelberger, H. Q. Tran, P.-N. Cheng, C.-C. Chiu, P. Cao, D. P. Raleigh, J. J. de Pablo, J. S. Nowick, M. T. Zanni. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient -sheet. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1314481110

Cite This Page:

University of Wisconsin-Madison. "Crucial clumping of diabetes-causing proteins identified." ScienceDaily. ScienceDaily, 11 November 2013. <www.sciencedaily.com/releases/2013/11/131111185227.htm>.
University of Wisconsin-Madison. (2013, November 11). Crucial clumping of diabetes-causing proteins identified. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/11/131111185227.htm
University of Wisconsin-Madison. "Crucial clumping of diabetes-causing proteins identified." ScienceDaily. www.sciencedaily.com/releases/2013/11/131111185227.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins