Featured Research

from universities, journals, and other organizations

Lignin-feasting microbe holds promise for biofuels

Date:
November 13, 2013
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Researchers have identified a rain forest microbe that feasts on the lignin in plant leaf litter, making it a potential ally for the cost-effective production of advanced biofuels.

An expedition into the Luquillo Experimental Forest in Puerto Rico by JBEI and Berkeley Lab researchers led to the identification of a soil microbe that utilizes lignin as its sole source of carbon.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

Nature designed lignin, the tough woody polymer in the walls of plant cells, to bind and protect the cellulose sugars that plants use for energy. For this reason, lignin is a major challenge for those who would extract those same plant sugars and use them to make advanced biofuels. As part of their search for economic ways to overcome the lignin challenge, researchers at the Joint BioEnergy Institute (JBEI) have characterized the enzymatic activity of a rain forest microbe that breaks down lignin essentially by breathing it.

Related Articles


"Using a combination of transcriptomics and proteomics we observed the anaerobe Enterobacter lignolyticus SCF1 as it grows on lignin," says Blake Simmons, a chemical engineer who heads JBEI's Deconstruction Division. "We detected significant lignin degradation over time by absorbance, suggesting that enzymes in E. lignolyticus could beused to deconstruct lignin and improve biofuels production. Our results also demonstrate the value of a multi-omics approach for providing insight into the natural processes of bacterial lignin decomposition."

Not only does lignin inhibit access to cellulose, the by-products of lignin degradation can also be toxic to microbes employed to ferment sugars into fuels. This makes finding microbes that can tolerate a lignin environment a priority for biofuels research. Tropical rainforests harbor anaerobic microbes that actually utilize lignin as their sole source of carbon. Kristen DeAngelis, a microbial ecologist formerly of JBEI and now with the University of Massachusetts, has led expeditions to the Luquillo Experimental Forest where she and her crew harvested soil microbes.

"Tropical soil microbes are responsible for the nearly complete decomposition of leaf plant litter in as little as eighteen months," she says. "The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by these tropical soil bacteria make them useful templates for improving biofuel production."

In an earlier study at JBEI led by DeAngelis, E. lignolyticus SCF1 is a member, was shown to be capable of anaerobic lignin degradation, but the enzymes behind this degradation were unknown. Through their multi-omics approach plus measurements of enzyme activities, DeAngelis, Simmons and their colleagues were able to characterize the mechanisms by which E. lignolyticus SCF1 is able to degrade lignin during anaerobic growth conditions.

"We found that E. lignolyticus SCF1 is capable of degrading 56-percent of the lignin under anaerobic conditions within 48 hours, with increased cell abundance in lignin-amended compared to unamended growth," Simmons says. "Proteomics analysis enabled us to identify 229 proteins that were significantly differentially abundant between the lignin-amended and unamended growth conditions. Of these, 127 proteins were at least two-fold up-regulated in the presence of lignin."

This new study also showed that E. lignolyticus SCF1 is able to degrade lignin via both assimilatory and dissimilatory pathways, the first soil bacterium to demonstrate this dual capability.

"Our next step is to look at what kind of chemical bonds are preferred by these two different pathways of reduction," DeAngelis says. "We can then try to develop tailored routes to targeted intermediates by defining the molecular mechanisms of enzymatic reactions with lignin."


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kristen M. DeAngelis, Deepak Sharma, Rebecca Varney, Blake Simmons, Nancy G. Isern, Lye Meng Markilllie, Carrie Nicora, Angela D. Norbeck, Ronald C. Taylor, Joshua T. Aldrich, Errol W. Robinson. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Frontiers in Microbiology, 2013; 4 DOI: 10.3389/fmicb.2013.00280

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Lignin-feasting microbe holds promise for biofuels." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113143604.htm>.
DOE/Lawrence Berkeley National Laboratory. (2013, November 13). Lignin-feasting microbe holds promise for biofuels. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2013/11/131113143604.htm
DOE/Lawrence Berkeley National Laboratory. "Lignin-feasting microbe holds promise for biofuels." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113143604.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

The Toronto Star (Jan. 27, 2015) Ancient techniques of growing greens with fish and water are well ahead of Toronto bylaws. Video provided by The Toronto Star
Powered by NewsLook.com
How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins