Featured Research

from universities, journals, and other organizations

Potential drug target in sight for rare genetic disease

Date:
November 14, 2013
Source:
University of Alberta Faculty of Medicine & Dentistry
Summary:
Medical researchers have discovered the structure of a potential drug target for a rare genetic disease, paving the way for an alternative treatment for the condition.

Medical researchers at the University of Alberta have discovered the structure of a potential drug target for a rare genetic disease, paving the way for an alternative treatment for the condition.

Faculty of Medicine & Dentistry researcher Michael James and his team recently published their findings about MPS I (Mucopolysaccharidosis I) in the peer-reviewed journal, Nature Chemical Biology. Children born with a severe form of this disease usually die before they are 10 years old, while those with less severe forms can live well into adulthood. Symptoms can include improperly formed bones and teeth, carpal tunnel syndrome, an enlarged spleen, hearing or vision problems, distinct facial characteristics, heart problems and mental delays. MPS I affects about one in 100,000 people.

The human body continually churns out building blocks that rebuild various parts of the body, such as bone and cartilage. For example, bones in the body are rebuilt every seven years.

"Your body has to have a way of doing this, so that there is a breakdown of bone and then a production of the bone building-blocks," said research associate and team member Jiang Yin. He explained that with MPS I, the body can't complete this process due to a malfunctioning enzyme.

The gene responsible for creating this enzyme and directing its work is mutated in patients who have the disease. In fact, more than 100 mutations in this gene can cause the disease and impact its severity.

In order to better understand MPS I, researchers have been trying to figure out the three-dimensional structure of this important enzyme. James's team was the first to determine the 3-D structures that link specific defects in the enzyme to specific symptoms of the disease and specific genetic mutations.

"Now that we know how this enzyme functions and where the mutations are, the sites of the mutations can now be related to the disease symptoms" said James. "We've identified a drug target. There won't be a cure yet, but hopefully we can develop drugs to treat the less severe forms of the disease."

Yin added: "If we can treat people in the early stages of the disease, we may be able to lessen the severity of the disease and the mental delays."

James said this paves the way for the possibility of an alternative to enzyme replacement therapy, which involves weekly injections of a needle between a protective membrane and the spinal cord. The treatment is both painful and expensive, costing about $450,000 a year per patient.

The U of A team has been collaborating with researchers from Simon Fraser University and the University of British Columbia on their work. Haiying Bie, a post-doctoral fellow from the U of A, was also a key member of the team.

"We're very excited about this discovery," said James. "We've all worked very hard."


Story Source:

The above story is based on materials provided by University of Alberta Faculty of Medicine & Dentistry. The original article was written by Raquel Maurier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Haiying Bie, Jiang Yin, Xu He, Allison R Kermode, Ethan D Goddard-Borger, Stephen G Withers, Michael N G James. Insights into mucopolysaccharidosis I from the structure and action of α-L-iduronidase. Nature Chemical Biology, 2013; 9 (11): 746 DOI: 10.1038/nchembio1013-746b

Cite This Page:

University of Alberta Faculty of Medicine & Dentistry. "Potential drug target in sight for rare genetic disease." ScienceDaily. ScienceDaily, 14 November 2013. <www.sciencedaily.com/releases/2013/11/131114142211.htm>.
University of Alberta Faculty of Medicine & Dentistry. (2013, November 14). Potential drug target in sight for rare genetic disease. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/11/131114142211.htm
University of Alberta Faculty of Medicine & Dentistry. "Potential drug target in sight for rare genetic disease." ScienceDaily. www.sciencedaily.com/releases/2013/11/131114142211.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins