Featured Research

from universities, journals, and other organizations

Protein regulates burning of body fat

Date:
November 19, 2013
Source:
University of Veterinary Medicine -- Vienna
Summary:
Body fat contains a small number of brown adipose cells -- special fat cells that generate heat without muscle activity. They do this using a protein known as UCP1 that enables babies or hibernating animals to keep warm without shivering. A research team has found that a specific chemical compound can activate UCP1 under certain conditions, and that could also trigger fat burning.

Muscle movements generate body heat. However, body heat can also be generated in another way: body fat contains a small number of brown adipose cells -- special fat cells that can generate heat without muscle activity. They do this using a protein known as UCP1 that enables babies or hibernating animals to keep warm without shivering. A research team at the University of Veterinary Medicine (Vetmeduni Vienna) has found that a specific chemical compound, an aldehyde, can activate UCP1 under certain conditions, and that could also trigger fat burning. The data were published in the journal PLoS One.

Related Articles


The uncoupling Protein 1 (UCP1) is found exclusively in brown adipose tissue. Until some years ago it was thought that only babies and hibernating animals had brown adipose tissue, but since then it also has been found in adults, so UCP1 could be useful in the fight against obesity. "If we can find out how to regulate this protein, we might also find a way to trigger fat burning in the body," explains biophysicist Elena Pohl from the Unit of Physiology and Biophysics at the Vetmeduni Vienna.

UCP1 burns energy

UCP1 is located in the membrane of mitochondria, the power plants that fuel every single cell in the body. Cells that require a lot of energy, such as muscle cells, contain many mitochondria. But brown adipose tissue contains even more mitochondria than muscle tissue. In fact, it is the mitochondria that are responsible for the brown colour of this form of adipose tissue. Regular adipose tissue, which is the majority, is white. UCP1 in mitochondria uses the cell's energy to produce heat. If UCP1 is 'turned off' in mice, the animals will freeze. Hibernating animals would not survive the winter if they did not have this protein.

Researchers aim to regulate UCP1

Elena Pohl and her research group are trying to find a way to regulate UCP1. In a project funded by the FWF, they have tested different substances reported to activate UCP1, under them also reactive aldehyde 4-hydroxy-2-nonenal (HNE).Using an artificial cell membrane containing UCP1, the researchers were able to detect the activity of the protein by measuring the electrical conductivity on the membrane. The researchers dripped HNE onto the membrane and found that UCP1 can be activated by HNE only if combined with fatty acids. "In this model, all the 'players' are known so we could determine clearly whether the substance influences the protein directly or not. The discovery helps to improve our understanding of the mechanisms that regulate UCP1 and may even lead us to a way to burn body fat," explains co-author Olga Jovanovic.

Reducing free radicals

Free radicals play an important role in many biological processes, but they also cause cellular damage and play a crucial role in the pathogenesis of various diseases such as cancer, atherosclerosis and Alzheimer's disease. The research team has also shown that HNE, combined with fatty acids, also has the potential to minimize these damaging free radicals by reducing the membrane potential. "We want to elucidate the molecular mechanisms of UCP. We are still examining various aldehydes and other UCPs. There are five different UCPs and all their functions are not yet fully understood. We hope that our work will contribute to the development of therapies for various diseases."

Drugs in the battle against obesity

In the 1930s, a substance similar to UCP1 was developed that seemed to promise an easy way of losing weight. The substance was called 2,4-dinitrophenol and, like UCP1, it worked as an uncoupler in the mitochondria of cells. Taken in the right amounts, the drug accelerates the human metabolism by up to 50 percent. However, in some cases it caused serious or even lethal side effects and had to be withdrawn from the market. "If we are able to regulate UCP1 in a controlled way, it might be different story," says Pohl.


Story Source:

The above story is based on materials provided by University of Veterinary Medicine -- Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. Elena A. Malingriaux, Anne Rupprecht, Lars Gille, Olga Jovanovic, Petr Jezek, Martin Jaburek, Elena E. Pohl. Fatty Acids are Key in 4-Hydroxy-2-Nonenal-Mediated Activation of Uncoupling Proteins 1 and 2. PLoS ONE, 2013; 8 (10): e77786 DOI: 10.1371/journal.pone.0077786

Cite This Page:

University of Veterinary Medicine -- Vienna. "Protein regulates burning of body fat." ScienceDaily. ScienceDaily, 19 November 2013. <www.sciencedaily.com/releases/2013/11/131119093339.htm>.
University of Veterinary Medicine -- Vienna. (2013, November 19). Protein regulates burning of body fat. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/11/131119093339.htm
University of Veterinary Medicine -- Vienna. "Protein regulates burning of body fat." ScienceDaily. www.sciencedaily.com/releases/2013/11/131119093339.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins