Featured Research

from universities, journals, and other organizations

Protein regulates burning of body fat

Date:
November 19, 2013
Source:
University of Veterinary Medicine -- Vienna
Summary:
Body fat contains a small number of brown adipose cells -- special fat cells that generate heat without muscle activity. They do this using a protein known as UCP1 that enables babies or hibernating animals to keep warm without shivering. A research team has found that a specific chemical compound can activate UCP1 under certain conditions, and that could also trigger fat burning.

Muscle movements generate body heat. However, body heat can also be generated in another way: body fat contains a small number of brown adipose cells -- special fat cells that can generate heat without muscle activity. They do this using a protein known as UCP1 that enables babies or hibernating animals to keep warm without shivering. A research team at the University of Veterinary Medicine (Vetmeduni Vienna) has found that a specific chemical compound, an aldehyde, can activate UCP1 under certain conditions, and that could also trigger fat burning. The data were published in the journal PLoS One.

Related Articles


The uncoupling Protein 1 (UCP1) is found exclusively in brown adipose tissue. Until some years ago it was thought that only babies and hibernating animals had brown adipose tissue, but since then it also has been found in adults, so UCP1 could be useful in the fight against obesity. "If we can find out how to regulate this protein, we might also find a way to trigger fat burning in the body," explains biophysicist Elena Pohl from the Unit of Physiology and Biophysics at the Vetmeduni Vienna.

UCP1 burns energy

UCP1 is located in the membrane of mitochondria, the power plants that fuel every single cell in the body. Cells that require a lot of energy, such as muscle cells, contain many mitochondria. But brown adipose tissue contains even more mitochondria than muscle tissue. In fact, it is the mitochondria that are responsible for the brown colour of this form of adipose tissue. Regular adipose tissue, which is the majority, is white. UCP1 in mitochondria uses the cell's energy to produce heat. If UCP1 is 'turned off' in mice, the animals will freeze. Hibernating animals would not survive the winter if they did not have this protein.

Researchers aim to regulate UCP1

Elena Pohl and her research group are trying to find a way to regulate UCP1. In a project funded by the FWF, they have tested different substances reported to activate UCP1, under them also reactive aldehyde 4-hydroxy-2-nonenal (HNE).Using an artificial cell membrane containing UCP1, the researchers were able to detect the activity of the protein by measuring the electrical conductivity on the membrane. The researchers dripped HNE onto the membrane and found that UCP1 can be activated by HNE only if combined with fatty acids. "In this model, all the 'players' are known so we could determine clearly whether the substance influences the protein directly or not. The discovery helps to improve our understanding of the mechanisms that regulate UCP1 and may even lead us to a way to burn body fat," explains co-author Olga Jovanovic.

Reducing free radicals

Free radicals play an important role in many biological processes, but they also cause cellular damage and play a crucial role in the pathogenesis of various diseases such as cancer, atherosclerosis and Alzheimer's disease. The research team has also shown that HNE, combined with fatty acids, also has the potential to minimize these damaging free radicals by reducing the membrane potential. "We want to elucidate the molecular mechanisms of UCP. We are still examining various aldehydes and other UCPs. There are five different UCPs and all their functions are not yet fully understood. We hope that our work will contribute to the development of therapies for various diseases."

Drugs in the battle against obesity

In the 1930s, a substance similar to UCP1 was developed that seemed to promise an easy way of losing weight. The substance was called 2,4-dinitrophenol and, like UCP1, it worked as an uncoupler in the mitochondria of cells. Taken in the right amounts, the drug accelerates the human metabolism by up to 50 percent. However, in some cases it caused serious or even lethal side effects and had to be withdrawn from the market. "If we are able to regulate UCP1 in a controlled way, it might be different story," says Pohl.


Story Source:

The above story is based on materials provided by University of Veterinary Medicine -- Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. Elena A. Malingriaux, Anne Rupprecht, Lars Gille, Olga Jovanovic, Petr Jezek, Martin Jaburek, Elena E. Pohl. Fatty Acids are Key in 4-Hydroxy-2-Nonenal-Mediated Activation of Uncoupling Proteins 1 and 2. PLoS ONE, 2013; 8 (10): e77786 DOI: 10.1371/journal.pone.0077786

Cite This Page:

University of Veterinary Medicine -- Vienna. "Protein regulates burning of body fat." ScienceDaily. ScienceDaily, 19 November 2013. <www.sciencedaily.com/releases/2013/11/131119093339.htm>.
University of Veterinary Medicine -- Vienna. (2013, November 19). Protein regulates burning of body fat. ScienceDaily. Retrieved December 27, 2014 from www.sciencedaily.com/releases/2013/11/131119093339.htm
University of Veterinary Medicine -- Vienna. "Protein regulates burning of body fat." ScienceDaily. www.sciencedaily.com/releases/2013/11/131119093339.htm (accessed December 27, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Breeding Christmas Trees Without Needle Mess

Breeding Christmas Trees Without Needle Mess

AP (Dec. 26, 2014) The presents are unwrapped. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree. Scientist hope to make that process a ghost of Christmas past. (Dec. 26) Video provided by AP
Powered by NewsLook.com
Venemous White Cobra Gets New Home

Venemous White Cobra Gets New Home

Reuters - Light News Video Online (Dec. 24, 2014) A venemous white cobra gets a new home at the San Diego Zoo, following a dramatic capture and months of quarantine. Sharon Reich reports Video provided by Reuters
Powered by NewsLook.com
Christmas Trees And Bugs Are Seemingly Symbiotic

Christmas Trees And Bugs Are Seemingly Symbiotic

Newsy (Dec. 24, 2014) The National Christmas Tree Association says bugs in trees are a relatively small problem, but recommends giving your tree a good shake anyway. Video provided by Newsy
Powered by NewsLook.com
Uruguay Chooses 'smart' Farming Methods for Ambitious Goals

Uruguay Chooses 'smart' Farming Methods for Ambitious Goals

AFP (Dec. 24, 2014) Using GM crops, genetically chosen cows, and technology like satellites and drones, Uruguay - with a population of just 3 million people - is aiming to produce enough food to feed 50 million. Duration: 03:10 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins