Featured Research

from universities, journals, and other organizations

Recreating the history of life through the genome

Date:
November 19, 2013
Source:
Centro Nacional de Investigaciones Oncologicas (CNIO)
Summary:
One of the most important processes in the life of cells is genome replication. In most organisms genome replication follows a set plan, in which certain regions of the genome replicate before others; alterations in the late replication phases had previously been related to cancer and aging. Now, scientists have, for the first time related this process to evolution of life.

This image shows CNIO researchers David de Juan, Alfonso Valencia, Daniel Rico and Óscar Fernández-Capetillo (from left to right).
Credit: CNIO

One of the most important processes in the life of cells is genome replication, which consists of making exact copies of the DNA in order to pass it on to their offspring when they split. In most organisms, from yeast to human beings, genome replication follows a set plan, in which certain regions of the genome replicate before others; alterations in the late replication phases had previously been related to cancer and ageing. Now, a team from the Spanish National Cancer Research Centre (CNIO), led by Alfonso Valencia, has for the first time related this process to evolution over millions of years of life on Earth.

The study, developed alongside Tomás Marqués-Bonet from the Institute of Evolutionary Biology (CSIC-UPF) in Barcelona, represents a new evolutionary approach in which the genome becomes the lead player, and opens up new possibilities for the study of the evolution of living beings and their diversity. The results of the study are available in the open-access  journal Biology Open.

Valencia explains: "We have discovered that replication is like a mirror that reflects the evolutionary history of living beings: the first genes to be replicated are the oldest, whilst those that replicate later on are the youngest".

According to this model, each new gene tends to replicate after the already existing ones, causing the accumulation of successive layers of new genes. David de Juan and Daniel Rico, researchers in Valencia's group who have worked on the study, compare it to: "the growth of a tree trunk, in which the exterior concentric rings represent the most recent years in the life of the tree". But what biological advantages might this model offer?

The later genetic material is copied, the greater the probability of the DNA being damaged and of mutations accumulating. This way the older genes, which are vital for life, are located in protected regions −those that accumulate less mutations− which replicate early; while the newer genes replicate in more unstable regions of the genome − those that accumulate more mutations− which replicate later on. "This allows the most recent genes to evolve much more quickly than the older ones", says Rico.

"The regions that replicate late also have a compact and inaccessible structure; they are hidden zones in the genome that act as evolutionary laboratories, where these genes can acquire new functions without affecting essential processes in the organism", adds de Juan.

The authors of the study maintain that this model could have facilitated the birth of new genes related to specific functions in tissues and organs and could have contributed to the development of complex structures such as the brain or liver.

Cancer and the Evolution of Living Beings: The Same Origin

 

The appearance of mutations in late replicating regions had already been related to cancer and ageing in previous studies. Óscar Fernández-Capetillo, the head of CNIO's Genomic Instability Group, and one of the study's researchers, says the results are 'surprising', given that: "they help to understand how drastic changes in the genome—that until now had only been related to the formation of tumours—are, at the same time, crucial for the evolution of the species".

The authors point out that "the fascinating thing about this model is how the late-replicating regions have contributed to the adaptive capacity of species as complex as the human being".

The evolutionary vision of nature has reached new dimensions with the latest advances in molecular biology, and has reached its high point in the last 10 years thanks to the massive genome sequencing techniques. Valencia says the new advances in this direction will help improve our understanding of all living systems.


Story Source:

The above story is based on materials provided by Centro Nacional de Investigaciones Oncologicas (CNIO). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Juan, D. Rico, T. Marques-Bonet, O. Fernandez-Capetillo, A. Valencia. Late-replicating CNVs as a source of new genes. Biology Open, 2013; DOI: 10.1242/bio.20136924

Cite This Page:

Centro Nacional de Investigaciones Oncologicas (CNIO). "Recreating the history of life through the genome." ScienceDaily. ScienceDaily, 19 November 2013. <www.sciencedaily.com/releases/2013/11/131119101044.htm>.
Centro Nacional de Investigaciones Oncologicas (CNIO). (2013, November 19). Recreating the history of life through the genome. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/11/131119101044.htm
Centro Nacional de Investigaciones Oncologicas (CNIO). "Recreating the history of life through the genome." ScienceDaily. www.sciencedaily.com/releases/2013/11/131119101044.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) — Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) — A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Raw: Three Rare White Tiger Cubs Debut at Zoo

Raw: Three Rare White Tiger Cubs Debut at Zoo

AP (Apr. 16, 2014) — The Buenos Aires Zoo debuted a trio of rare white Bengal tiger cubs on Wednesday. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins