Featured Research

from universities, journals, and other organizations

More accurate method to date tropical glacier moraines

Date:
November 19, 2013
Source:
Dartmouth College
Summary:
Scientists have found a more accurate method to determine the ages of boulders deposited by tropical glaciers, findings that will likely influence previous research of how climate change has impacted ice masses around the equator.

Dartmouth College-led researchers analyzed beryllium-10 concentrations in moraine boulders deposited by the Quelccaya Ice Cap.
Credit: Meredith Kelly

A Dartmouth-led team has found a more accurate method to determine the ages of boulders deposited by tropical glaciers, findings that will likely influence previous research of how climate change has impacted ice masses around the equator.

Related Articles


The study appears in the journal Quaternary Geochronology.

Scientists use a variety of dating methods to determine the ages of glacial moraines around the world, from the poles where glaciers are at sea level to the tropics where glaciers are high in the mountains. Moraines are sedimentary deposits that mark the past extents of glaciers. Since glaciers respond sensitively to climate, especially at high latitudes and high altitudes, the timing of glacial fluctuations marked by moraines can help scientists to better understand past climatic variations and how glaciers may respond to future changes.

In the tropics, glacial scientists commonly use beryllium-10 surface exposure dating. Beryllium-10 is an isotope of beryllium produced when cosmic rays strike bedrock that is exposed to air. Predictable rates of decay tell scientists how long ago the isotope was generated and suggest that the rock was covered in ice before then. Elevation, latitude and other factors affect the rate at which beryllium-10 is produced, but researchers typically use rates taken from calibration sites scattered around the globe rather than rates locally calibrated at the sites being studied.

The Dartmouth-led team looked at beryllium-10 concentrations in moraine boulders deposited by the Quelccaya Ice Cap, the largest ice mass in the tropics. Quelccaya, which sits 18,000 feet above sea level in the Peruvian Andes, has retreated significantly in recent decades. The researchers determined a new locally calibrated production rate that is at least 11 percent to 15 percent lower than the traditional global production rate.

"The use of our locally calibrated beryllium-10 production rate will change the surface exposure ages reported in previously published studies at low latitude, high altitude sites and may alter prior paleoclimate interpretations," said Assistant Professor Meredith Kelly, the study's lead author and a glacial geomorphologist at Dartmouth.

The new production rate yields beryllium-10 ages that are older than previously reported, which means the boulders were exposed for longer than previously estimated. Prior studies suggested glaciers in the Peruvian Andes advanced during early Holocene time 8,000 -10,000 years ago, a period thought to have been warm but perhaps wet in the Andes. But the new production rate pushes back the beryllium-10 ages to 11,000 -12,000 years ago when the tropics were cooler and drier. Also during this time, glaciers expanded in the northern hemisphere, which indicates a relationship between the climate mechanisms that caused cooling in the northern hemisphere and southern tropics.

The findings suggest the new production rate should be used to deliver more precise ages of moraines in low-latitude, high-altitude locations, particularly in the tropical Andes. Such precision can help scientists to more accurately reconstruct past glacial and climatic variations, Kelly said.


Story Source:

The above story is based on materials provided by Dartmouth College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Meredith A. Kelly, Thomas V. Lowell, Patrick J. Applegate, Fred M. Phillips, Joerg M. Schaefer, Colby A. Smith, Hanul Kim, Katherine C. Leonard, Adam M. Hudson. A locally calibrated, late glacial 10Be production rate from a low-latitude, high-altitude site in the Peruvian Andes. Quaternary Geochronology, 2013; DOI: 10.1016/j.quageo.2013.10.007

Cite This Page:

Dartmouth College. "More accurate method to date tropical glacier moraines." ScienceDaily. ScienceDaily, 19 November 2013. <www.sciencedaily.com/releases/2013/11/131119131256.htm>.
Dartmouth College. (2013, November 19). More accurate method to date tropical glacier moraines. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/11/131119131256.htm
Dartmouth College. "More accurate method to date tropical glacier moraines." ScienceDaily. www.sciencedaily.com/releases/2013/11/131119131256.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Japan's Mt. Aso Volcano Spews Rocks

Raw: Japan's Mt. Aso Volcano Spews Rocks

AP (Nov. 28, 2014) — A volcano in southern Japan is spewing volcanic magma rocks. A regional weather observatory says this could be Mt. Aso's first magma eruption in 22 years. (Nov. 28) Video provided by AP
Powered by NewsLook.com
Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins