Featured Research

from universities, journals, and other organizations

Staphylococcus aureus bacteria turns immune system against itself

Date:
November 19, 2013
Source:
University of Chicago Medical Center
Summary:
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, a leading cause of skin infections and one of the major sources of hospital-acquired infections, including the antibiotic-resistant strain MRSA. Scientists have recently discovered one of the keys to the immense success of S. aureus — the ability to hijack a primary human immune defense mechanism and use it to destroy white blood cells.

Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, a leading cause of skin infections and one of the major sources of hospital-acquired infections, including the antibiotic-resistant strain MRSA.

Related Articles


University of Chicago scientists have recently discovered one of the keys to the immense success of S. aureus -- the ability to hijack a primary human immune defense mechanism and use it to destroy white blood cells. The study was published Nov 15 in Science.

"These bacteria have endowed themselves with weapons to not only anticipate every immune defense, but turn these immune defenses against the host as well," said Olaf Schneewind, MD, PhD, professor and chair of the Department of Microbiology at the University of Chicago and senior author of the paper.

One of the first lines of defense in the human immune response are neutrophils, a type of white blood cell that ensnares invaders in neutrophil extracellular traps (NETs), a web-like structure of DNA and proteins. Captured bacteria are then destroyed by amoeba-like white blood cells known as macrophages. However, S. aureus infection sites are often marked by an absence of macrophages, indicating the bacteria somehow defend themselves against the immune system.

To reveal how these bacteria circumvent the human immune response, Schneewind and his team screened a series of S. aureus possessing mutations that shut down genes thought to play a role in infection. They looked to see how these mutated bacteria behaved in live tissue, and identified two strains that were unable to avoid macrophage attack. When these mutations -- to the staphylococcal nuclease (nuc) and adenosine synthase A (adsA) genes respectively -- were reversed, infection sites were free of macrophages again.

Looking for a mechanism of action, the researchers grew S. aureus in a laboratory dish alongside neutrophils and macrophages. The white blood cells were healthy in this environment and could clear bacteria. But the addition of a chemical to stimulate NET formation triggered macrophage death. Realizing that a toxic product was being generated by S. aureus in response to NETs, the team used high performance liquid chromatography and mass spectrometry techniques to isolate the molecule.

They discovered that S. aureus were converting NETs into 2'-deoxyadenosine (dAdo), a molecule which is toxic to macrophages. This effectively turned NETs into a weapon against the immune system.

"Sooner or later almost every human gets some form of S. aureus infection. Our work describes for the first time the mechanism that these bacteria use to exclude macrophages from infected sites," Schneewind said. "Coupled with previously known mechanisms that suppress the adaptive immune response, the success of these organisms is almost guaranteed."

S. aureus bacteria are found on the skin or in the respiratory tracts of colonized humans and commonly cause skin infections in the form of abscesses or boils. Normally not dangerous, severe issues arise when the bacteria enter the bloodstream, where they can cause diseases such as sepsis and meningitis. Antibiotic-resistant strains, such as methicillin-resistant S. aureus (MRSA), are difficult to treat and have plagued healthcare systems around the world.

Schneewind and his team hope to leverage their findings toward therapies against S. aureus infections. But both genes and the dAdo molecule are closely related to important human physiological mechanisms, and Schneewind believes targeting these in bacteria, without harming human function, could be difficult.

"In theory you could build inhibitors of these bacterial enzymes or remove them," Schneewind said. "But these are untested waters and the pursuit of such goal requires a lot more study."


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. Thammavongsa, D. M. Missiakas, O. Schneewind. Staphylococcus aureus Degrades Neutrophil Extracellular Traps to Promote Immune Cell Death. Science, 2013; 342 (6160): 863 DOI: 10.1126/science.1242255

Cite This Page:

University of Chicago Medical Center. "Staphylococcus aureus bacteria turns immune system against itself." ScienceDaily. ScienceDaily, 19 November 2013. <www.sciencedaily.com/releases/2013/11/131119193307.htm>.
University of Chicago Medical Center. (2013, November 19). Staphylococcus aureus bacteria turns immune system against itself. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/11/131119193307.htm
University of Chicago Medical Center. "Staphylococcus aureus bacteria turns immune system against itself." ScienceDaily. www.sciencedaily.com/releases/2013/11/131119193307.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins