Featured Research

from universities, journals, and other organizations

Unexpected bond formation of chemical element boron

Date:
November 20, 2013
Source:
Heidelberg, Universität
Summary:
In synthetic chemistry, so-called element-element bonding can be systematically exploited to assemble small building blocks to obtain structures that are more complex than the "starting material" and can be used for the resource-saving production of more precious materials. Scientists have discovered a hitherto unknown coupling reaction. Two positively charged compounds of the element boron join to form a new molecule with a chain of four boron atoms.

From two make four: In the newly discovered coupling reaction, molecule A is transformed into the (twice positively charged) four-atom boron chain B designed to serve as starting material for the synthesis of boron chain polymers C.
Credit: Hans-Jörg Himmel

In synthetic chemistry, so-called element-element bonding can be systematically exploited to assemble small building blocks to obtain structures that are more complex than the "starting material" and can be used for the resource-saving production of more precious materials. Scientists at Heidelberg University's Institute of Inorganic Chemistry have discovered a hitherto unknown coupling reaction. Two positively charged compounds of the element boron join to form a new molecule with a chain of four boron atoms. The team headed by Prof. Dr. Hans-Jörg Himmel now intends to investigate the further implications of this unexpected bond formation.

Related Articles


In carbon chemistry, element-element coupling reactions play a crucial role. For example, small building blocks with very few carbon atoms of the kind produced by the steam cracking of crude oil are assembled to generate a broad range of products, including plastics, fuels, lipids and detergents, as well as more complex substances like pharmaceutical agents. Due to this great significance, a large number of synthesis variants have been developed. In their research work the Heidelberg scientists focus on coupling reactions of this kind with compounds involving the element boron which are similar in structure to the corresponding carbon compounds.

As Professor Himmel explains, the new element-element combinations normally result from a reaction between two electrically neutral or differently polarised atoms, not between two positively or two negatively polarised ones. But now the Heidelberg researchers have discovered a coupling reaction in which two positively charged molecules bond together. This is made possible by so-called multi-centre bonding, which plays a significant role in boron chemistry. "The product of this reaction is a compound with four boron atoms," says Prof. Himmel. "This in its turn is a promising precursor on the route toward the making of complex boron chains."

Such compounds of the element boron were unknown so far, says the Heidelberg chemist. He and his team are now investigating the further combination of the four-atom boron chain to form boron chain polymers expected to possess high electrical conductivity and other useful material properties. Such materials would be of interest for electronic and optoelectronic applications, Prof. Himmel concludes. The research results have now been published in Nature Chemistry.


Story Source:

The above story is based on materials provided by Heidelberg, Universität. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sebastian Litters, Elisabeth Kaifer, Markus Enders, Hans-Jörg Himmel. A boron–boron coupling reaction between two ethyl cation analogues. Nature Chemistry, 2013; DOI: 10.1038/NCHEM.1776

Cite This Page:

Heidelberg, Universität. "Unexpected bond formation of chemical element boron." ScienceDaily. ScienceDaily, 20 November 2013. <www.sciencedaily.com/releases/2013/11/131120081240.htm>.
Heidelberg, Universität. (2013, November 20). Unexpected bond formation of chemical element boron. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2013/11/131120081240.htm
Heidelberg, Universität. "Unexpected bond formation of chemical element boron." ScienceDaily. www.sciencedaily.com/releases/2013/11/131120081240.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solar Impulse Departs Myanmar for China

Solar Impulse Departs Myanmar for China

AFP (Mar. 30, 2015) — Solar Impulse 2 takes off from Myanmar&apos;s second biggest city of Mandalay and heads for China&apos;s Chongqing, the fifth flight of a landmark journey to circumnavigate the globe powered solely by the sun. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Internet Giants Drive Into the Electric Vehicle Space

Internet Giants Drive Into the Electric Vehicle Space

Reuters - Business Video Online (Mar. 30, 2015) — Internet companies are looking to disrupt the auto industry with new smart e-vehicles, but widespread adoption in Asia may not be cured by new Chinese investments. Pamela Ambler reports. Video provided by Reuters
Powered by NewsLook.com
Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) — An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) — Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins