Featured Research

from universities, journals, and other organizations

New technique for testing drugs to treat cystic fibrosis, epilepsy

Date:
November 26, 2013
Source:
University of Southampton
Summary:
Researchers have developed a new microsystem for more efficient testing of pharmaceutical drugs to treat diseases such as cystic fibrosis, MG (myasthenia gravis) and epilepsy.

Dr. de Planque (front) and Dr. Williamson (back).
Credit: University of Southampton

Researchers from the University of Southampton, in collaboration with researchers at the University of Quebec at Montreal, have developed a new microsystem for more efficient testing of pharmaceutical drugs to treat diseases such as cystic fibrosis, MG (myasthenia gravis) and epilepsy.

Related Articles


A large percentage of pharmaceutical drugs target ion channels, which are proteins found in a cell's membrane, that play a pivotal role in these serious disorders and that are used to test the effectiveness of new drugs.

Ion channels create tiny openings in the membrane for specific ions (atoms that are positively or negatively charged) to pass through. Currently researchers use electrophysiology, which measures an electric current through ion channel proteins, to evaluate the effectiveness of drugs on ion channels.

However, this can be a slow and expensive process as it is typically carried out using ion channels in living cell membranes.

Now, Southampton researchers have been able to produce an ion channel without using cells, which is possible with so-called cell-free expression mixtures, and to insert the channels in a stable artificial cell membrane which should enable faster, less expensive drug testing. The key is that the cell-free expression mixture, which is known to destabilise these membranes, can actually help with incorporating the produced channels into a membrane between two microdroplets.

This combination of molecular biology and microtechnology transformed the conventional multi-day, multi-step single ion-channel electrophysiology method into a quick and economical process.

"By putting the ion channel into an artificial membrane, we only have one type of channel, no living cells and a relatively inexpensive method for testing for several of these types of channels at once," says lead author of the study Dr Maurits de Planque of the Nano Research Group in Electronics and Computer Science at the University of Southampton.

"Researchers have experimented with cell-free mixtures before, but they found that this method was not economical due to the amount of expensive biochemicals required," adds Dr de Planque. "Our proposal to develop a new platform, which uses a couple of microlitres instead of millilitres, will be a very cost-effective way of doing this, particularly when the produced channel is directly inserted in a membrane for drug testing."

Study co-author, Biological Sciences lecturer Dr Philip Williamson, from the University's Institute for Life Sciences, says: "This new technology opens up avenues for drug screening, identifying new leads and identifying off target effects. Off target effects are a major complication in the development of new drugs, and many are withdrawn from late stage clinical trials due to cardiotoxic effects arising from the inhibition of the hERG voltage gated ion channel in the heart. The hERG channel coordinates cardiac rhythm and the availability of cheap and reliable assays to identify these interactions early will help streamline the drug discovery process."

The study 'Single-channel electrophysiology of cell-free expressed ion channels by direct incorporation in lipid bilayers', which appears in the RSC journal Analyst, is in collaboration with biological scientists in the University's Institute for Life Sciences.

The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC).


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mark S. Friddin, Natalie P. Smithers, Maοwenn Beaugrand, Isabelle Marcotte, Philip T. F. Williamson, Hywel Morgan, Maurits R. R. de Planque. Single-channel electrophysiology of cell-free expressed ion channels by direct incorporation in lipid bilayers. The Analyst, 2013; DOI: 10.1039/C3AN01540H

Cite This Page:

University of Southampton. "New technique for testing drugs to treat cystic fibrosis, epilepsy." ScienceDaily. ScienceDaily, 26 November 2013. <www.sciencedaily.com/releases/2013/11/131126092600.htm>.
University of Southampton. (2013, November 26). New technique for testing drugs to treat cystic fibrosis, epilepsy. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2013/11/131126092600.htm
University of Southampton. "New technique for testing drugs to treat cystic fibrosis, epilepsy." ScienceDaily. www.sciencedaily.com/releases/2013/11/131126092600.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins