Featured Research

from universities, journals, and other organizations

Biology professor finds 'Goldilocks' effect in snail populations

Date:
December 3, 2013
Source:
University of Iowa
Summary:
A researcher has discovered that a "Goldilocks" effect applies to the reproductive output of a tiny New Zealand snail -- considered a troublesome species in many countries -- that may one day help environmentalists control their spread.

The snail species Potamopyrgus antipodarum is native to New Zealand, but has established itself in many other locations.
Credit: Bart Zjilstra

A University of Iowa researcher has discovered that a "Goldilocks" effect applies to the reproductive output of a tiny New Zealand snail -- considered a troublesome species in many countries -- that may one day help environmentalists control their spread.

Known in the United States as the "New Zealand mud snail," the freshwater snail (Potamopyrgus antipodarum) grows to a length of about one-quarter inch in U.S. rivers and lakes, and up to one-half inch in its native New Zealand.

The snails were first discovered in the Pacific Northwest in the 1980s and have since spread widely throughout the West, including Yellowstone National Park, as well as east to the Great Lakes. Parts of the Snake River in Idaho have been reported to contain more than 100,000 snails per square meter.

The snail study, conducted by Maurine Neiman, assistant professor in the University of Iowa Department of Biology, appears in the Nov. 21 issue of the journal PLOS ONE. Her co-author, Nicholas Zachar, received his undergraduate degree from the UI in 2013 and currently is studying documentary filmmaking at American University, Washington, D.C.

Neiman says her research has shown that although the species is resilient and prolific, certain boundaries may restrict its ability to grow and reproduce.

"The snails are incredibly sensitive to their environment," she says. "For example, we discovered that increasing population size from seven to eight snails results in a striking drop in reproductive output, with the snails in the eight-snail populations producing only half as many embryos as snails in the seven-cup populations. Altogether, we showed that population density had a major influence on individual growth rate and embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual."

For purposes of the study, the snail populations were grown, fed, and maintained in laboratory conditions in order to eliminate the effects of other variables.

Neiman and Zachar also detected a so-called "Goldilocks" effect, in which too few or too many snails living together could adversely affect reproduction. This possibility is especially intriguing in light of another 2013 study by Neiman's group, which showed that the reproductive output of these snails can be controlled by simply exposing the snails to water conditioned by other snails, suggesting that reproduction in these invasive snails is affected by waterborne, snail-produced chemicals.

"While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos," Neiman says.

"These results indicate that there are profound and complex relationships between population density, growth rate, and embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology," she says.

In 2011, Neiman, together with UI colleagues John M. Logsdon Jr., UI associate professor of biology, and collaborator Jeffrey Boore of the University of California, Berkeley, received a four-year, $876,752 grant from the National Science Foundation. That research, which uses both sexual and asexually reproducing representatives of the snail species, tests ideas of why sexual reproduction persists, including the hypothesis that sex is needed to prevent the buildup of harmful mutations.

In her PLOS ONE paper, Neiman notes that population density plays a central role in many important evolutionary and ecological hypotheses, including, but not limited to, those addressing why most organisms reproduce sexually.


Story Source:

The above story is based on materials provided by University of Iowa. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicholas Zachar, Maurine Neiman. Profound Effects of Population Density on Fitness-Related Traits in an Invasive Freshwater Snail. PLoS ONE, 2013; 8 (11): e80067 DOI: 10.1371/journal.pone.0080067

Cite This Page:

University of Iowa. "Biology professor finds 'Goldilocks' effect in snail populations." ScienceDaily. ScienceDaily, 3 December 2013. <www.sciencedaily.com/releases/2013/12/131203124913.htm>.
University of Iowa. (2013, December 3). Biology professor finds 'Goldilocks' effect in snail populations. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2013/12/131203124913.htm
University of Iowa. "Biology professor finds 'Goldilocks' effect in snail populations." ScienceDaily. www.sciencedaily.com/releases/2013/12/131203124913.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins