Featured Research

from universities, journals, and other organizations

Electricity from waste heat with more efficient materials

Date:
December 5, 2013
Source:
Aalto University
Summary:
Thermoelectric materials can convert waste heat directly into electricity. Scientists have developed hybrid thermoelectric materials which combine useful properties from different types of materials.

Thermoelectric materials can convert waste heat directly into electricity. Tommi Tynell, M.Sc. (Tech.), who is a doctoral candidate at the Aalto University School of Chemical Technology, has developed hybrid thermoelectric materials which combine useful properties from different types of materials.

He found that by adding organic layers between layers of zinc it is possible to improve the performance of thermoelectric materials. The organic layers are also believed to have a major effect in reducing thermal conductivity, which would be very useful in thermoelectric materials.

"Developing more efficient thermoelectric materials is a major challenge, because the physical properties that affect the performance of the materials are not independent of each other. The optimization of a material is very difficult, because as you improve one feature, other properties may deteriorate at the same time," says Tynell.

The biggest obstacle to the broad utilisation of thermoelectric generators is the low efficiency of currently known thermoelectric materials. In addition, the best existing compounds do not withstand the high temperatures required and often contain rare and harmful elements.

Eco-friendly materials In his doctoral research, Tynell added layer upon layer of nanoscale structures, examining their formation using X-ray and infrared devices. In the research, thin films of zinc oxide were used, because zinc oxide is one of the most promising thermoelectric oxide materials. Oxide materials are environmentally friendly and in turn their availability is not a problem. It is believed that they will play an important role in the future development of sustainable energy technologies.

Tynell combined atomic layer deposition and molecular layer deposition and thus succeeded in manufacturing a hybrid superlattice composed of organic and inorganic compounds. Atomic layer deposition is an extremely accurately controlled nanofabrication process. The process was used to produce layered hundred-nanometre-thick nanostructures, with extremely thin organic layers alternating with thicker inorganic layers. Three different source materials were used for the organic substance: hydroquinone, 4-aminophenol and 4,4'-oxydianiline. All of the organic molecules tested were found to influence the thermoelectric properties of the thin zinc oxide film.

"Although the structures of the starting materials were quite similar, the size of the effect was quite variable depending on the source material. Hydroquinone was the most applicable of the three, because it formed the desired structures most easily."

Tommi Tynell did his doctoral thesis in Academy Professor Maarit Karppinen's research group. Karppinen and her team have studied thermoelectric materials for a dozen years. The research of the group is unique in that it is rare to use hybrid materials in thermoelectric research. Only a few research groups in the world are currently focused on investigating the properties of hybrid materials. By utilising thermoelectric energy harvesting it will be possible to reduce our dependence on traditional energy sources. Untapped waste heat is available everywhere. For example, it is produced in industrial processes and households, and car exhausts also produce wasted heat. Tommi Tynell's research is a step towards being able to take advantage of heat that is currently disappearing into thin air.

Master of Science (Technology) Tommi Tynell's dissertation 'Atomic Layer Deposition of Thermoelectric ZnO Thin Films' will be examined at the Aalto University School of Chemical Technology on 13 December 2013 at 12 noon. The opponent will be Professor Julien Bachmann, and the event will be supervised by Academy Professor Maarit Karppinen.


Story Source:

The above story is based on materials provided by Aalto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tommi Tynell, Hisao Yamauchi, Maarit Karppinen, Ryuji Okazaki, Ichiro Terasaki. Atomic layer deposition of Al-doped ZnO thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013; 31 (1): 01A109 DOI: 10.1116/1.4757764

Cite This Page:

Aalto University. "Electricity from waste heat with more efficient materials." ScienceDaily. ScienceDaily, 5 December 2013. <www.sciencedaily.com/releases/2013/12/131205141549.htm>.
Aalto University. (2013, December 5). Electricity from waste heat with more efficient materials. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/12/131205141549.htm
Aalto University. "Electricity from waste heat with more efficient materials." ScienceDaily. www.sciencedaily.com/releases/2013/12/131205141549.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins