Featured Research

from universities, journals, and other organizations

Quantum effects help cells capture light, but the details are obscure

Date:
December 6, 2013
Source:
American Institute of Biological Sciences
Summary:
By studying the behavior of light-gathering molecules used by plants, algae, and some bacteria in photosynthesis, researchers have found evidence that quantum coherence eases ultrafast energy transfers among the molecules.

Sophisticated recent experiments with ultrashort laser pulses support the idea that intuition-defying quantum interactions between molecules help plants, algae, and some bacteria efficiently gather light to fuel their growth. But key details of nature's vital light-harvesting mechanisms remain obscure, and the exact role that quantum physics may play in understanding them is more subtle than was once thought, according to an Overview Article in the January issue of BioScience.

The article, by Jessica M. Anna and Gregory D. Scholes of the University of Toronto and Rienk van Grondelle of Vrije Universiteit in Amsterdam, describes experiments that employ a technique called 2-D electronic spectroscopy. Researchers flash laser pulses at the light-harvesting protein molecules of bacteria and algae, timed to within a billionth of a billionth of a second, then observe how the energized molecules re-emit light of different colors in the ensuing instants. This allows investigators to deduce how energy is stored by and moves among the molecules. But the results would be impossible to explain if captured light energy were conveyed by discrete entities moving randomly between molecules. Rather, the insights of quantum mechanics are needed.

Quantum mechanics envisages particles as being smeared over regions of space, rather than being pointlike, and as interfering with each other like waves. The smearing is undetectable in everyday life, but the experimental results indicate that, within arrays of light-harvesting molecules that serve as light "antennas" inside cells, such "coherence" eases ultrafast energy transfers that help organisms use solar energy. It thus allows life to pervade the planet, using the process known as photosynthesis to extract carbon dioxide from the air.

Yet Anna and her colleagues point out that the molecular details of the light-gathering apparatus have evolved very differently in different species, so there is nothing simple about how organisms exploit quantum coherence. Indeed, coherence, contrary to what some researchers have speculated, does not seem to dominate light gathering by providing an express route for conveying energy from where it is first captured to the chemical reaction center where it is used. Instead, Anna and her colleagues write, researchers should "inquire how coherence on short length and time scales might seed some kind of property or function" in light-gathering systems. Such understanding might help scientists devise environmentally friendly solar technologies that could regulate their rate of energy input and redistribute and repair their components when the need arises, as living cells do.


Story Source:

The above story is based on materials provided by American Institute of Biological Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jessica M. Anna and Gregory D. Scholes and Rienk van Grondelle of Vrije. A Little Coherence in Photosynthetic Light Harvesting. BioScience, January 2014 DOI: 10.1093/biosci/bit002

Cite This Page:

American Institute of Biological Sciences. "Quantum effects help cells capture light, but the details are obscure." ScienceDaily. ScienceDaily, 6 December 2013. <www.sciencedaily.com/releases/2013/12/131206124423.htm>.
American Institute of Biological Sciences. (2013, December 6). Quantum effects help cells capture light, but the details are obscure. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2013/12/131206124423.htm
American Institute of Biological Sciences. "Quantum effects help cells capture light, but the details are obscure." ScienceDaily. www.sciencedaily.com/releases/2013/12/131206124423.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins