Featured Research

from universities, journals, and other organizations

Flipping a gene switch reactivates fetal hemoglobin, may reverse sickle cell disease

Date:
December 8, 2013
Source:
Children's Hospital of Philadelphia
Summary:
Hematology researchers have manipulated key biological events in adult blood cells to produce a form of hemoglobin normally absent after the newborn period. Because fetal hemoglobin is unaffected by the genetic defect in sickle cell disease, these cell culture findings may open the door to a new therapy for the debilitating blood disorder.

A chromatin loop forms when an enhancer and a promoter, two widely separated elements in a DNA sequence, come into contact as they carry out gene activity.
Credit: The Children's Hospital of Philadelphia

Hematology researchers at The Children's Hospital of Philadelphia have manipulated key biological events in adult blood cells to produce a form of hemoglobin normally absent after the newborn period. Because this fetal hemoglobin is unaffected by the genetic defect in sickle cell disease (SCD), the cell culture findings may open the door to a new therapy for the debilitating blood disorder.

"Our study shows the power of a technique called forced chromatin looping in reprogramming gene expression in blood-forming cells," said hematology researcher Jeremy W. Rupon, M.D., Ph.D., of The Children's Hospital of Philadelphia. "If we can translate this approach to humans, we may enable new treatment options for patients."

Rupon presented the team's findings today at a press conference during the annual meeting of the American Society of Hematology (ASH) in New Orleans. Rupon worked in collaboration with a former postdoctoral fellow, Wulan Deng, Ph.D., in the laboratory of Gerd Blobel, M.D., Ph.D.

Hematologists have long sought to reactivate fetal hemoglobin as a treatment for children and adults with SCD, the painful, sometimes life-threatening genetic disorder that deforms red blood cells and disrupts normal circulation.

In the normal course of development, a biological switch flips during the production of hemoglobin, the oxygen-carrying component of red blood cells. Regulatory elements in DNA shift the body from producing the fetal form of hemoglobin to producing the adult form instead. This transition occurs shortly after birth. When patients with SCD undergo this transition, their inherited gene mutation distorts adult hemoglobin, forcing red blood cells to assume a sickled shape.

In the current study, Rupon and Blobel reprogrammed gene expression to reverse the biological switch, causing cells to resume producing fetal hemoglobin, which is not affected by the SCD mutation, and produces normally shaped red blood cells.

The scientists built on previous work by Blobel's team showing that chromatin looping, a tightly regulated interaction between widely separated DNA sequences, drives gene transcription -- the conversion of DNA code into RNA messages to carry out biological processes.

In the current study, the researchers used a specialized tool, a genetically engineered zinc finger (ZF) protein, which they custom-designed to latch onto a specific DNA site carrying the code for fetal hemoglobin. They attached the ZF to another protein that forced a chromatin loop to form. The loop then activated gene expression that produced embryonic hemoglobin in blood-forming cells from adult mice. The team obtained similar results in human adult red blood cells, forcing the cells to produce fetal hemoglobin.

Rupon and Blobel will continue investigations aimed at moving their research toward clinical application. Rupon added that the approach may also prove useful in treating other diseases of hemoglobin, such as thalassemia.


Story Source:

The above story is based on materials provided by Children's Hospital of Philadelphia. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital of Philadelphia. "Flipping a gene switch reactivates fetal hemoglobin, may reverse sickle cell disease." ScienceDaily. ScienceDaily, 8 December 2013. <www.sciencedaily.com/releases/2013/12/131208133646.htm>.
Children's Hospital of Philadelphia. (2013, December 8). Flipping a gene switch reactivates fetal hemoglobin, may reverse sickle cell disease. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2013/12/131208133646.htm
Children's Hospital of Philadelphia. "Flipping a gene switch reactivates fetal hemoglobin, may reverse sickle cell disease." ScienceDaily. www.sciencedaily.com/releases/2013/12/131208133646.htm (accessed September 18, 2014).

Share This



More Health & Medicine News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com
What HealthKit Bug Means For Your iOS Fitness Apps

What HealthKit Bug Means For Your iOS Fitness Apps

Newsy (Sep. 18, 2014) Apple has delayed the launch of the HealthKit app platform, citing a bug. Video provided by Newsy
Powered by NewsLook.com
Residents Vaccinated as Haiti Fights Cholera Epidemic

Residents Vaccinated as Haiti Fights Cholera Epidemic

AFP (Sep. 18, 2014) Haitians receive the second dose of the vaccine against cholera as part of the UN's vaccination campaign. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Artificial Sweetener Could Promote Diabetes

Artificial Sweetener Could Promote Diabetes

Newsy (Sep. 17, 2014) Doctors once thought artificial sweeteners lacked the health risks of sugar, but a new study says they can impact blood sugar levels the same way. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins