Featured Research

from universities, journals, and other organizations

New long-lived greenhouse gas discovered: Highest global-warming impact of any compound to date

Date:
December 9, 2013
Source:
University of Toronto
Summary:
Scientists have discovered a novel chemical lurking in the atmosphere that appears to be a long-lived greenhouse gas. The chemical -- perfluorotributylamine -- is the most radiatively efficient chemical found to date, breaking all other chemical records for its potential to impact climate.

Earth's atmosphere. Scientists from U of T's Department of Chemistry have discovered a novel chemical lurking in the atmosphere that appears to be a long-lived greenhouse gas (LLGHG).
Credit: eugenesergeev / Fotolia

Scientists from U of T's Department of Chemistry have discovered a novel chemical lurking in the atmosphere that appears to be a long-lived greenhouse gas (LLGHG). The chemical -- perfluorotributylamine (PFTBA) -- is the most radiatively efficient chemical found to date, breaking all other chemical records for its potential to impact climate.

Related Articles


Radiative efficiency describes how effectively a molecule can affect climate. This value is then multiplied by its atmospheric concentration to determine the total climate impact.

PFTBA has been in use since the mid-20th century for various applications in electrical equipment and is currently used in thermally and chemically stable liquids marketed for use in electronic testing and as heat transfer agents. It does not occur naturally, that is, it is produced by humans. There are no known processes that would destroy or remove PFTBA in the lower atmosphere so it has a very long lifetime, possibly hundreds of years, and is destroyed in the upper atmosphere.

"Global warming potential is a metric used to compare the cumulative effects of different greenhouse gases on climate over a specified time period," said Cora Young who was part of the U of T team, along with Angela Hong and their supervisor, Scott Mabury. Time is incorporated in the global warming potential metric as different compounds stay in the atmosphere for different lengths of time, which determines how long-lasting the climate impacts are.

Carbon dioxide (CO2) is used as the baseline for comparison since it is the most important greenhouse gas responsible for human-induced climate change. "PFTBA is extremely long-lived in the atmosphere and it has a very high radiative efficiency; the result of this is a very high global warming potential. Calculated over a 100-year timeframe, a single molecule of PFTBA has the equivalent climate impact as 7100 molecules of CO2," said Hong.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University of Toronto. "New long-lived greenhouse gas discovered: Highest global-warming impact of any compound to date." ScienceDaily. ScienceDaily, 9 December 2013. <www.sciencedaily.com/releases/2013/12/131209124101.htm>.
University of Toronto. (2013, December 9). New long-lived greenhouse gas discovered: Highest global-warming impact of any compound to date. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/12/131209124101.htm
University of Toronto. "New long-lived greenhouse gas discovered: Highest global-warming impact of any compound to date." ScienceDaily. www.sciencedaily.com/releases/2013/12/131209124101.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins