Featured Research

from universities, journals, and other organizations

World's highest quantum efficiency UV photodetectors created

Date:
December 9, 2013
Source:
Northwestern University
Summary:
New technology could aid in the detection of missiles and chemical and biological threats.

Photodetector grown on silicon. (a) Plan-view of illustration of processed array. (b) Plan-view SEM image of the processed photodetectors demonstrated crack-free surface. (c) Cross-sectional SEM image of the processed photodetector.
Credit: Image courtesy of Northwestern University

Researchers from Northwestern University's McCormick School of Engineering and Applied Science have developed the world's highest quantum efficiency ultraviolet (UV) photodetector, an advance in technology that could aid in the detection of missiles and chemical and biological threats.

The development of UV photodetectors has been driven by numerous applications in the defense, commercial, and scientific arenas. Until recently, photomultiplier tubes or silicon photodectors with UV band-pass filters were the only viable options for imaging in this important spectral range. Thanks to technological and scientific advances in the III-Nitride material system, high aluminum composition AlxGa1-xN-based semiconductor structures have become a promising alternative.

Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at McCormick, and her group have brought this AlxGa1-xN-based dream device closer to reality by developing a compact photodetector with the world's highest quantum efficiency.

"Heat sources such as flames, jet engines, or missile plumes emit light throughout the UV portion of the spectrum corresponding to their black-body temperature," said Razeghi, director of Northwestern's Center for Quantum Devices. "These manmade UV sources can easily be detected at wavelengths less than 290 nanometers due to the non-existence of a terrestrial background signature. The military, in particular, is interested in developing ground- and air-based solar-blind sensors to detect the UV signature of an active missile plume and provide early warning and potentially allow for missile tracking and ultimately interception."

The military could also use the UV detectors and sources to detect biological threats.

"Biological agents could have devastating effects on public health, as the anthrax scare of 2001 made us all too aware," said Erdem Cicek, a graduate student in Razeghi's lab. "There is a significant lag time between a covert attack and the widespread appearance of symptoms, which makes the general lack of readily available real-time detection systems a significant problem. The low-cost UV photodetectors we developed can be used as a critical weapon in the defense against a bio-terror attack, allowing authorities time to warn the population, identify the contaminated areas, and enact quarantine procedures before the exposure overwhelms response capabilities."

Conventionally, AlxGa1-xN-based solar-blind photodetector structures are grown at a reactor pressure of 50 millibar. Razeghi's group observed that reducing the growth pressure helps to suppress parasitic pre-reactions and yields more manageable growth rates while still maintaining good material quality. By refining the low-pressure metal-organic chemical-vapor-deposition growth as well as the UV photodetector p-i-n structure, Razeghi's group has successfully fabricated the world's highest quantum efficiency solar-blind UV photodetectors grown on sapphire substrate.

Although sapphire is the most common choice for back-illuminated devices, researchers also developed alternative low-cost UV photodetectors grown on silicon substrate. Razeghi's group used a novel maskless Lateral Epitaxial Overgrowth (LEO) technique for the growth of a high-quality aluminum nitride (AlN) template layer on silicon substrate. Following the template growth, a p-i-n structure is grown and processed.

This low-cost approach eventually led to the world's first successful implementation of UV-PD structure grown on a silicon substrate. A paper describing the findings, "AlxGa1-xN-Based Solar-Blind Photodetector Based on Lateral Epitaxial Overgrowth of AlN on Si Substrate," was published October 30 in the journal Applied Physics Letters.

The researchers will now work to achieve higher than 95 percent operability UV focal plane array with high uniformity.

The research is supported by the US Navy.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, M. Razeghi. AlxGa1-xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%. Applied Physics Letters, 2013; 103 (19): 191108 DOI: 10.1063/1.4829065

Cite This Page:

Northwestern University. "World's highest quantum efficiency UV photodetectors created." ScienceDaily. ScienceDaily, 9 December 2013. <www.sciencedaily.com/releases/2013/12/131209124109.htm>.
Northwestern University. (2013, December 9). World's highest quantum efficiency UV photodetectors created. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/12/131209124109.htm
Northwestern University. "World's highest quantum efficiency UV photodetectors created." ScienceDaily. www.sciencedaily.com/releases/2013/12/131209124109.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins