Featured Research

from universities, journals, and other organizations

Gene sequencing project finds drugs with promise for treating childhood tumor

Date:
December 9, 2013
Source:
St. Jude Children's Research Hospital
Summary:
Drugs that enhance a process called oxidative stress were found to kill rhabdomyosarcoma tumor cells growing in the laboratory and possibly bolstered the effectiveness of chemotherapy against this aggressive tumor of muscle and other soft tissue.

Drugs that enhance a process called oxidative stress were found to kill rhabdomyosarcoma tumor cells growing in the laboratory and possibly bolstered the effectiveness of chemotherapy against this aggressive tumor of muscle and other soft tissue. The findings are the latest from the St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project and appear in the December 9 edition of the scientific journal Cancer Cell.

Oxidative stress is caused when oxygen-free radicals and other byproducts of cell metabolism build up in cells. This study offers the first evidence that rhabdomyosarcoma patients might benefit from drugs that harness the mechanism to kill cancer cells, including medications that are on the market or in development.

The results followed next generation, whole genome sequencing of the tumor and normal genomes of 16 tumors from 13 rhabdomyosarcoma patients. The findings were validated with more focused sequencing of tumors from an additional 37 patients. The analysis also provided new clues about why tumors recur.

“Overall, survival for patients with recurrent rhabdomyosarcoma is just 17 percent, and until now nothing was known about how tumors evolve in response to therapy,” said corresponding author Michael Dyer, Ph.D., a member of the St. Jude Department of Developmental Neurobiology and a Howard Hughes Medical Institute Investigator. “Clinically, we know that chemotherapy will kill the vast majority of tumor cells. This analysis suggests that a rare subset of tumor cells harbor different genetic alterations and that those cells serve as the seeds for the recurrence of rhabdomyosarcoma.”

Based on the results, St. Jude plans to expand biopsies to include recurrent rhabdomyosarcoma tumors and possibly other solid tumors. Researchers said the importance of collecting tissue samples from recurrent tumors will grow as more targeted therapies become available.

“Studies like the current one involving rhabdomyosarcoma are giving us a close-up look at the way cancer evolves in response to treatment,” said study co-author Richard K. Wilson, Ph.D., director of The Genome Institute at Washington University School of Medicine in St. Louis, where scientists have extensive expertise analyzing tumor recurrence using whole-genome sequencing. “When cancer comes back, it’s genetically very similar to the original tumor but often with additional mutations that may give cancer cells new strategies to survive attack by whatever drugs are thrown at them. This makes a lot of sense but it’s been hard to prove without whole-genome sequencing.”

The study was part of the Pediatric Cancer Genome Project. Since its launch in 2010, the project has sequenced the complete normal and cancer genomes of 700 young cancer patients with some of the most aggressive and least understood cancers. The project has advanced understanding of the genetic origins of childhood cancers and helped to build a foundation for the next generation of cancer diagnostic and treatment tools.

About 350 new cases of rhabdomyosarcoma are identified each year in the U.S., making it the most common soft tissue tumor in children. Current therapies cure more than 75 percent of patients whose tumors have not spread widely. The prognosis is worse, however, for other patients, including those with recurrent disease.

About 60 percent of rhabdomyosarcoma patients have tumors of the embryonal subtype, and about 25 percent have the alveolar subtype. This study showed the two subtypes have different genetic origins and involve a dramatically different number of chromosomal rearrangements, mutations and other gene variations.

Embryonal rhabdomyosarcoma included far more genomic alterations than alveolar subtype tumors. The results support the hypothesis that alveolar rhabdomyosarcoma is driven by a single chromosomal rearrangement. The result is a new gene created by fusing part of the FOXO1 gene with either the PAX3 or the PAX7 genes.

In this study, 58 percent of patients with intermediate or high-risk embryonal subtype tumors had mutations in genes, including NRAS, KRAS and HRAS, that make up the RAS pathway. The pathway helps to regulate cell division and is often deregulated in cancer cells. No RAS pathway mutations were found in alveolar rhabdomyosarcoma.

RAS pathway mutations were not the only changes that distinguished the normal and embryonal tumor genomes. “Based on mutations we found in the genome, there is evidence of high levels of oxidative stress in the tumors,” Dyer said.

When researchers screened a library of more than 200 drugs and related compounds for activity against embryonal subtype tumor cells from three patients, the most promising results involved drugs that increased oxidative stress in tumor cells. The drugs killed cancer cells and also enhanced the effectiveness of chemotherapy. Drugs that targeted the RAS pathway showed little activity against the tumor cells.

“This suggests that altering the ability of tumor cells to handle that stress or increasing the stress just a bit is enough to push the cell over the edge and it dies,” Dyer said. “This gives us novel and exciting new therapeutic options to pursue based on results from drug screenings of primary tumor samples from patients.”


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiang Chen, Elizabeth Stewart, AnangA. Shelat, Chunxu Qu, Armita Bahrami, Mark Hatley, Gang Wu, Cori Bradley, Justina McEvoy, Alberto Pappo, Sheri Spunt, MarcusB. Valentine, Virginia Valentine, Fred Krafcik, WalterH. Lang, Monika Wierdl, Lyudmila Tsurkan, Viktor Tolleman, SaraM. Federico, Chris Morton, Charles Lu, Li Ding, John Easton, Michael Rusch, Panduka Nagahawatte, Jianmin Wang, Matthew Parker, Lei Wei, Erin Hedlund, David Finkelstein, Michael Edmonson, Sheila Shurtleff, Kristy Boggs, Heather Mulder, Donald Yergeau, Steve Skapek, DouglasS. Hawkins, Nilsa Ramirez, PhilipM. Potter, JohnA. Sandoval, AndrewM. Davidoff, ElaineR. Mardis, RichardK. Wilson, Jinghui Zhang, JamesR. Downing, MichaelA. Dyer. Targeting Oxidative Stress in Embryonal Rhabdomyosarcoma. Cancer Cell, 2013; 24 (6): 710 DOI: 10.1016/j.ccr.2013.11.002

Cite This Page:

St. Jude Children's Research Hospital. "Gene sequencing project finds drugs with promise for treating childhood tumor." ScienceDaily. ScienceDaily, 9 December 2013. <www.sciencedaily.com/releases/2013/12/131209180956.htm>.
St. Jude Children's Research Hospital. (2013, December 9). Gene sequencing project finds drugs with promise for treating childhood tumor. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/12/131209180956.htm
St. Jude Children's Research Hospital. "Gene sequencing project finds drugs with promise for treating childhood tumor." ScienceDaily. www.sciencedaily.com/releases/2013/12/131209180956.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins