Featured Research

from universities, journals, and other organizations

New study highlights key role soil structure plays in water uptake by crops

Date:
December 10, 2013
Source:
University of Southampton
Summary:
The increased global consumption of food means that there is an increasing yield gap between crop production and crop usage. To help tackle this issue, a team of scientists has used advanced mathematical modelling techniques to understand the precise role soil structure plays in water uptake.

The attached image shows the boundary of the soil aggregate (left), the bulk soil geometry comprising of a collection of aggregates (middle) and the internal pore structure of the soil aggregate, which is composed of a selection of soil particles (right). The soil particles are shown in brown, the water in blue and the air bubbles in white.
Credit: Image courtesy of University of Southampton

The increased global consumption of food means that there is an increasing yield gap between crop production and crop usage. To help tackle this issue, a team of scientists from the University of Southampton has used advanced mathematical modelling techniques to understand the precise role soil structure plays in water uptake.

Modelling of flow in soil and uptake of water by plants is essential both for understanding and optimising agricultural processes which, in turn, provides the means to maximise crop yield. The team used the University's IRIDIS High Performance Computing Facility to study the effect of different geometrical features within the soil and used these models to measure how these features affect the overall hydraulic properties.

In order to measure the flow of water through soil, they first had to examine the flow of water around a single soil particle. Next they looked at the flow properties of a collection of soil particles, known as a soil aggregate. This multi-scale approach captured the underlying geometry through a series of targeted computer simulations.

The researchers found that the flow properties near the surface of the aggregates are a key factor which determines the overall flow properties in soil. The flow properties of the soil aggregates are effectively determined by the intra-aggregate pore. The relatively small size of these pores renders the aggregates as almost completely impermeable. However, near the aggregate surface these pores act to increase the size of the (much larger) inter-aggregate pores and results in a much larger flow throughout the bulk soil.

Co-author Dr Keith Daly, a Research Fellow in Engineering and the Environment at the University of Southampton, says:

"The models developed in this work will be used to develop an understanding of flow in different soil types. This, in turn, will be used to develop optimal soil treatments to increase plant-water uptake and, hence, crop yield.. This will be of particular importance for the 30 per cent of UK wheat which is grown on drought prone land."

The study, which was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Royal Society University Research Fellowship, is published in the journal Proceedings of the Royal Society A.


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "New study highlights key role soil structure plays in water uptake by crops." ScienceDaily. ScienceDaily, 10 December 2013. <www.sciencedaily.com/releases/2013/12/131210193117.htm>.
University of Southampton. (2013, December 10). New study highlights key role soil structure plays in water uptake by crops. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2013/12/131210193117.htm
University of Southampton. "New study highlights key role soil structure plays in water uptake by crops." ScienceDaily. www.sciencedaily.com/releases/2013/12/131210193117.htm (accessed August 31, 2014).

Share This




More Plants & Animals News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins