Featured Research

from universities, journals, and other organizations

Biodegradable or not?

Date:
December 11, 2013
Source:
Helmholtz Centre for Environmental Research - UFZ
Summary:
In order to improve the evaluation process for the long-term consequences of pesticides, scientists have developed a new detection method and a model that can enable determinations regarding whether and how readily biodegradable the residues of pesticides are.

In order to improve the evaluation process for the long-term consequences of pesticides, scientists have developed a new detection method and a model that can enable determinations regarding whether and how readily biodegradable the residues of pesticides are. The study, conducted by scientists at the Helmholtz-Centre for Environmental Research (UFZ), the Rhine-Westphalian Technical University Aachen (RWTH) and the Technical University of Denmark has recently appeared in the scientific journal Critical Reviews in Environmental Science and Technology.

Pesticides have a bad reputation: they harm the environment, have negative effects on the diversity of species and pollute the soil. "This is partially correct, but also partially incorrect. Pesticides are important for the efficacy of our modern agriculture methods. And pesticides are not necessarily pesticides -- differentiation is necessary in this context. Generally speaking, biodegradability is supposed to be the top priority when deploying pesticides," says Prof. Dr. Matthias Kästner, Director of the Department Environmental Biotechnology at the Helmholtz-Centre for Environmental Research -- UFZ in Leipzig.

Worldwide, today approximately 5,000 pesticides are utilized as substances for plant protection and for pest control. As varied as their respective effectiveness is, their effects on the environment are equally varied. Some pesticides are quickly biodegraded, while others take longer. And some of them create chemical bonds with components in the soil and form the so-called bound residues. One has always previously assumed that these residues were, per se, toxic. This is why pesticides that form more than 70% bound residues are no longer in compliance today. Kästner: "But what exactly is concealed behind these bound residues, i.e. whether or not they really are toxic or what chemical structures they have hidden, could not yet been evaluated."

By applying the so-called 13C-method, Kästner and his team applied pesticides onto various reference soils and examined them thoroughly regarding their fate. For this purpose, they initially marked the pesticide to be examined with the non-radioactive, heavy carbon isotope 13C -- and tracked it in various bio-molecules with the aid of a mass spectrometer after completion of the experiment timeframe. In this manner the scientists were able to determine the residues, the changes in the pesticide, and its breakdown products in the soil.

The most significant result from the study states -- there are various groups of bound residues. In the current issue of the technical journal Critical Reviews in Environmental Science and Technology, the UFZ research scientists compile their results and introduce a classification system and a modelling approach for bound residues.

As regards Type 1, the pesticide itself or its breakdown products of organic materials are deposited in the soil (humus) or trapped within, and can in principle be released at any time. If the pesticide has undergone a chemical bond with the humus, bound residues are allocated to the Type 2, which can only be released with difficulty. Residues from both Type 1 and Type 2 are to be categorized as toxicologically relevant.

"At this juncture a precise examination must be carried out regarding whether or not approval of a pesticide that forms such residues in the soil is possible and defensible," says Matthias Kästner. As regards residues of the Type 3, the pesticide was decomposed by bacteria, and the carbon contained therein was transported into the microbial bio-mass. "For these kinds of residues, we can give the "all-clear" signal and confirm that there is no further risk," Kästner states.

Pesticides, from which the bound residues in the soil are allocated to Type 3, could thus be approved without risk in the future. Conversely, pesticides, which heretofore were considered to be risk-free, could possibly be classified as critical using this method. Kästner says "Only when we are capable of differentiating between biodegradable and high-risk pesticide residues we can act accordingly. This is why we hope that the C-method will be included in the dossiers of the approval procedure in the future. This is what we suggested to the German Federal Environmental Agency as well."

The initial findings from the UFZ study have already been accepted into the assessment processes of the officials involved in the approval procedure. Thus, for the residues of the approved pesticides 2.4 dichlorphenoxyacetic acid (2.4-D for short) and 2 methyl 4 chlorphenoxyacetic acid (MCPA for short), they were able to give the all-clear. "In order to better control the deployment of pesticides and their environmental consequences, we still have a lot of work to do," says Kästner. "The problems that we had with DDT (dichlorodiphenyltrichloroethane) and atrazine must not be repeated. Therefore, it is very important to understand what actually happens with pesticides after application."


Story Source:

The above story is based on materials provided by Helmholtz Centre for Environmental Research - UFZ. The original article was written by Nicole Silbermann. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthias Kästner, Karolina M. Nowak, Anja Miltner, Stefan Trapp, Andreas Schäffer. Classification and modelling of non-extractable residue (NER) formation of xenobiotics in soil—a synthesis. Critical Reviews in Environmental Science and Technology, 2013; 131113123519000 DOI: 10.1080/10643389.2013.828270

Cite This Page:

Helmholtz Centre for Environmental Research - UFZ. "Biodegradable or not?." ScienceDaily. ScienceDaily, 11 December 2013. <www.sciencedaily.com/releases/2013/12/131211104612.htm>.
Helmholtz Centre for Environmental Research - UFZ. (2013, December 11). Biodegradable or not?. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/12/131211104612.htm
Helmholtz Centre for Environmental Research - UFZ. "Biodegradable or not?." ScienceDaily. www.sciencedaily.com/releases/2013/12/131211104612.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) — Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) — Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins