Featured Research

from universities, journals, and other organizations

Clot-busters, caught on tape

Date:
December 13, 2013
Source:
American Institute of Physics (AIP)
Summary:
Ultrasound-stimulated microbubbles have been showing promise in recent years as a non-invasive way to break up dangerous blood clots. But though many researchers have studied the effectiveness of this technique, not much was understood about why it works. Now a team of researchers has collected the first direct evidence showing how these wiggling microbubbles cause a blood clot’s demise.

Image of a bubble (purple) burrowing into the network of a clot. The bubble is initially at rest in the fluid next to the clot. Exposure to ultrasound causes the bubble to shoot from left to right, penetrating the clot and causing damage to it in the process.
Credit: Christopher Acconcia

Ultrasound-stimulated microbubbles have been showing promise in recent years as a non-invasive way to break up dangerous blood clots. But though many researchers have studied the effectiveness of this technique, not much was understood about why it works. Now a team of researchers in Toronto has collected the first direct evidence showing how these wiggling microbubbles cause a blood clot's demise. The team's findings are featured in the AIP Publishing journal Applied Physics Letters.

Related Articles


Previous work on this technique, which is called sonothrombolysis, has focused on indirect indications of its effectiveness, including how much a blood clot shrinks or how well blood flow is restored following the procedure. The Toronto team, which included researchers from the University of Toronto and the Sunnybrook Research Institute, tried to catch the clot-killing process in action. Using high-speed photography and a 3-D microscopy technique, researchers discovered that stimulating the microbubbles with ultrasonic pulses pushes the bubbles toward the clots. The bubbles deform the clots' boundaries then begin to burrow into them, creating fluid-filled tunnels that break the clots up from the inside out.

These improvements in the understanding of how sonothrombolysis works will help researchers develop more sophisticated methods of breaking up blood clots, said lead author Christopher Acconcia.

Efforts so far "may only be scratching the surface with respect to effectiveness," said Acconcia. "Our findings provide a tool that can be used to develop more sophisticated sonothrombolysis techniques, which may lead to new tools to safely and efficiently dissolve clots in a clinical setting."


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Christopher Acconcia, Ben Y. C. Leung, Kullervo Hynynen, David E. Goertz. Interactions between ultrasound stimulated microbubbles and fibrin clots. Applied Physics Letters, 2013; 103 (5): 053701 DOI: 10.1063/1.4816750

Cite This Page:

American Institute of Physics (AIP). "Clot-busters, caught on tape." ScienceDaily. ScienceDaily, 13 December 2013. <www.sciencedaily.com/releases/2013/12/131213135309.htm>.
American Institute of Physics (AIP). (2013, December 13). Clot-busters, caught on tape. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2013/12/131213135309.htm
American Institute of Physics (AIP). "Clot-busters, caught on tape." ScienceDaily. www.sciencedaily.com/releases/2013/12/131213135309.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Adults Only Get The Flu Twice A Decade, Researchers Say

Adults Only Get The Flu Twice A Decade, Researchers Say

Newsy (Mar. 4, 2015) Researchers found adults only get the flu about once every five years. Scientists analyzed how a person&apos;s immunity builds up over time as well. Video provided by Newsy
Powered by NewsLook.com
New Hormone Could Protect Against Diabetes And Weight Gain

New Hormone Could Protect Against Diabetes And Weight Gain

Newsy (Mar. 4, 2015) A newly discovered hormone mimics the effects of exercise, protecting against diabetes and weight gain. Video provided by Newsy
Powered by NewsLook.com
Mount Everest Has a Poop Problem

Mount Everest Has a Poop Problem

Buzz60 (Mar. 4, 2015) With no bathrooms to use, climbers of Mount Everest have been leaving human waste on the mountain for years, and it&apos;s becoming a health issue. Mike Janela (@mikejanela) has more. Video provided by Buzz60
Powered by NewsLook.com
The Best Tips to 'Skinny' Your Home

The Best Tips to 'Skinny' Your Home

Buzz60 (Mar. 4, 2015) If you&apos;re looking to reach your health goals this season, there are a few simple tips to help you spring clean your space and improve your nutrition. Krystin Goodwin (@krystingoodwin) has the skinny on keeping a healthy home. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins