Featured Research

from universities, journals, and other organizations

Traffic jams lend insight into emperor penguin huddle

Date:
December 16, 2013
Source:
Institute of Physics
Summary:
Emperor penguins maintain the tight huddle that protects them from the harsh conditions of an Antarctic winter with stop-and-go movements like cars in a traffic jam, a new study has shown.

Emperor penguins maintain the tight huddle that protects them from the harsh conditions of an Antarctic winter with stop-and-go movements like cars in a traffic jam, a new study has shown.
Credit: Daniel Zitterbart

Emperor penguins maintain the tight huddle that protects them from the harsh conditions of an Antarctic winter with stop-and-go movements like cars in a traffic jam, a new study has shown.

Related Articles


By using a mathematical model that recreated the positions, movements and interactions of individual penguins in a huddle, researchers have revealed that an individual penguin only needs to move 2 cm in any direction for its neighbour to react and also perform a step to stay close to it.

These movements then flow through the entire huddle like a travelling wave and play a vital role in keeping the huddle as dense as possible to protect the penguins from the cold; the wave also helps smaller huddles merge into larger ones.

The results have been published today, 17 December, in the Institute of Physics and German Physical Society's New Journal of Physics and are accompanied by a video abstract. An advanced set of videos can be viewed here -- http://www.youtube.com/playlist?list=PLx-sGUtkV82eZJHWNyJ4uxPCBtb1GlWgw

In a previous study, the same group of researchers studied time-lapse videos and showed that instead of remaining static, penguins in a huddle actually move every 30-60 seconds, causing surrounding penguins to move with them.

Co-author of the study Daniel Zitterbart, from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), said: "Our previous study showed how penguins use travelling waves to allow movement in a densely packed huddle, but we had no explanation as to how these waves propagate and how they are triggered."

To investigate this, the researchers used a mathematical model, which has previously been used to study traffic jams, and compared the results with an analysis of video recordings of a real-life penguin huddle.

Unlike a traffic jam, the researchers found that the waves of movements in a penguin huddle can originate from any single penguin and can propagate in any direction as soon as a sufficient gap, known as a "threshold distance," develops between two penguins.

This threshold distance was estimated to be around 2 cm, which is twice the thickness of a penguin's compressive feather layer, suggesting the penguins touch each other only slightly when standing in a huddle without compressing the feather layer so as to maximize huddle density without compromising their own insulation.

"We were really surprised that a travelling wave can be triggered by any penguin in a huddle, rather than penguins on the outside trying to push in," continued Zitterbart. "We also found it amazing how two waves, if triggered shortly after each other, merged instead of passing one another, making sure the huddle remains compact."

The emperor penguin is the only vertebrate species that breeds during the severe conditions of the Antarctic winter. At this time of year temperatures can get as low as -50C and winds can reach speeds of up to 200 km/h.

To cope with the harsh conditions, the male penguins form dense huddles, often consisting of thousands of individuals, to maintain their body temperatures. Unlike other species of penguin, the male emperors are solely responsible for incubating their single egg during the winter, covering it in an abdominal pouch above their feet while the female returns to sea to feed.


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. R C Gerum, B Fabry, C Metzner, M Beaulieu, A Ancel, D P Zitterbart. The origin of traveling waves in an emperor penguin huddle. New Journal of Physics, 2013; 15 (12): 125022 DOI: 10.1088/1367-2630/15/12/125022

Cite This Page:

Institute of Physics. "Traffic jams lend insight into emperor penguin huddle." ScienceDaily. ScienceDaily, 16 December 2013. <www.sciencedaily.com/releases/2013/12/131216204020.htm>.
Institute of Physics. (2013, December 16). Traffic jams lend insight into emperor penguin huddle. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2013/12/131216204020.htm
Institute of Physics. "Traffic jams lend insight into emperor penguin huddle." ScienceDaily. www.sciencedaily.com/releases/2013/12/131216204020.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins