Featured Research

from universities, journals, and other organizations

Injured nerves regrow when fidgetin enzyme is suppressed

Date:
December 17, 2013
Source:
American Society for Cell Biology
Summary:
To determine whether fidgetin prevents nerve regrowth in adult brain, researchers used a novel nanoparticle technology to block enzyme in injured nerves of adult rats. Blocking fidgetin restarted nerve growth in animal model.

Suppressing the enzyme fidgetin promotes the re-growth of experimentally injured nerve cells and their connections, according to research with laboratory rats presented Dec. 17, at the American Society for Cell Biology (ASCB) annual meeting in New Orleans.

If additional studies confirm these results, fidgetin inhibition could be a potential new therapeutic approach to promote tissue regeneration and repair of the broken cell connections that occur in a wide range of conditions including myocardial infarction, or heart attack, chronic cutaneous wounds and spinal cord injury.

To explore the enzyme's role in neurons, Peter Baas, Ph.D., Lanfranco Leo and colleagues at Drexel University in Philadelphia collaborated with David Sharp, Ph.D., of Albert Einstein College of Medicine in Bronx, NY.

Dr. Sharp was the first scientist to determine that during growth and development, fidgetin prunes unstable microtubule scaffolding in cells. Microtubules hold up a cell's cytoskeleton.

Fidgetin also prunes unneeded connections in the neuronal network as it grows in complexity and size during childhood and adolescence.

The ability of nerves to grow and prune diminishes as individuals mature. As a result, neurons of adults have lost most of the power to reshape themselves. This characteristic is good for the hard wiring of the nervous system but a bitter pill because adult nerves that are badly injured or severed will not regenerate.

To determine whether fidgetin prevents nerve regrowth in the adult brain, the researchers used a novel nanoparticle technology to block the enzyme in the injured nerves of adult rats. By blocking fidgetin, they were able to restart growth in the animal model, a finding with potential implications for many types of human nerve injury, including the most difficult challenge, spinal cord injury.

The nanoparticle technology was developed by Joel Friedman, M.D., Ph.D., and Adam Friedman, M.D., of Albert Einstein College of Medicine. The tiny nanoparticles were infused with siRNA, small interfering RNA, that bound the messenger RNA (mRNA) transcribed from the fidgetin gene. The siRNA binding caused the mRNA to be tagged for destruction. As a result, the mRNA for fidgetin was not translated, and the fidgetin enzyme was not produced by the cell.

This study builds on Dr. Sharp's other research that showed that inhibiting fidgetin might help the healing of wounds, such as skin burns as well as heart tissue damaged by a heart attack.

"Depleting novel microtubule-related proteins represents a new and proprietary approach," according to the researchers, who have formed a biotech company, MicroCures Inc., to commercialize their approach. Among its potential uses, they said, would be "tissue regeneration and repair in a wide range of therapeutic contexts including: spinal cord injury, myocardial infarction, and acute and chronic cutaneous wounds."

The enzyme fidgetin is the protein product of the fidgetin gene, which was first identified in a mutant strain of "fidget" mice, first bred in 1943 by Hans Grόneberg and named for their fidgety behavior.


Story Source:

The above story is based on materials provided by American Society for Cell Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Cell Biology. "Injured nerves regrow when fidgetin enzyme is suppressed." ScienceDaily. ScienceDaily, 17 December 2013. <www.sciencedaily.com/releases/2013/12/131217123855.htm>.
American Society for Cell Biology. (2013, December 17). Injured nerves regrow when fidgetin enzyme is suppressed. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/12/131217123855.htm
American Society for Cell Biology. "Injured nerves regrow when fidgetin enzyme is suppressed." ScienceDaily. www.sciencedaily.com/releases/2013/12/131217123855.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) — A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) — ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) — An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins